Question #247656

Show that \int 𝑥 3 cos 𝑥 𝑑𝑥 𝜋 2 0 = 𝜋 3 8 − 3𝜋 + 6


1
Expert's answer
2021-10-06T18:12:45-0400

02πx3cosxdx=x3sinx02π02π3x2sinxdx=3[x2cosx02π+202πxcosxdx]=3[4π2+2(xsinx02π02πsinxdx)]=3[4π2+2(cosx02π)]=3[4π2+2]=12π26\int_0^{2 \pi} x^3\cos x dx= x^3\sin x\Biggr|_0^{2\pi}-\int_0^{2 \pi}3x^2 \sin x dx\\ =-3\left[-x^2 \cos x\Biggr|_0^{2 \pi}+2\int_0^{2 \pi}x \cos x dx\right]\\ =-3\left[-4 \pi^2+2\left(x \sin x\Biggr|_0^{2\pi}-\int_0^{2\pi}\sin x dx\right)\right]\\ =-3[-4\pi^2+2(\cos x\Biggr|_0^{2\pi})]\\ =-3[-4\pi^2+2]=12\pi^2-6


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS