Solve the following differential equations: (i) (π¦ 3 + 1) ππ¦ ππ₯ β π₯π¦ 2 = π₯, (ii) π₯π¦ 2 ππ¦ ππ₯ = π₯ 3 β π¦ 3, (iii) (1 + sin π₯) ππ¦ ππ₯ + π¦ cos π₯ = tan π₯, (iv) π₯ ππ¦ ππ₯ β 5π¦ = π₯ 7.
(i)
"(y^{3}+1)\\frac{dy}{dx}=x+xy^{2}"
"(y^{3}+1)\\frac{dy}{dx}=x(1+y^{2})"
"\\frac{1+y^{3}}{1+y^{2}}dy=xdx"
Integrate on both sides
"\\int \\frac{1+y^{3}}{1+y^{2}}dy=\\int xdx"
Let "1+y^{2}" =t
2ydy=dt
ydy="\\frac{dt}{2}"
"y^{2}=(t-1)"
"\\int \\frac{1}{1+y^{2}}dy+\\int \\frac{y^{3}}{1+y^{2}}=\\int xdx"
"tan^{-1}(y)+\\frac{1}{2}\\int \\frac{(t-1)}{t}dt=\\frac{x^{2}}{2}+C"
"tan^{-1}(y)+\\frac{1}{2}\\int (1-\\frac{1}{t})dt=\\frac{x^{2}}{2}+C"
"tan^{-1}(y)+\\frac{1}{2}(t-ln\\ t)=\\frac{x^{2}}{2}+C"
Putting the values of t answer becomes;
"tan^{-1}(y)+\\frac{1}{2}[(1+y^{2})-ln(1+y^{2})]=\\frac{x^{2}}{2}+C"
(ii)
"xy^{2}\\frac{dy}{dx}=x^{3}-y^{3}"
"\\frac{dy}{dx}=\\frac{x^{3}-y^{3}}{xy^{2}}"
On dividing the numerator and denominator by x3
"\\frac{dy}{dx}=\\frac{1-(\\frac{y}{x})^{3}}{(\\frac{y}{x})^{2}}"
Let "\\frac{y}{x}=V" "\\implies y=Vx"
"\\frac{dy}{dx}=V+x\\frac{dV}{dx}"
"V+x\\frac{dV}{dx}=\\frac{1-V^{3}}{V^{2}}"
"x\\frac{dV}{dx}=\\frac{1-V^{3}}{V^{2}}-V"
"x\\frac{dV}{dx}=\\frac{1-V^{3}-V^{3}}{V^{2}}"
"x\\frac{dV}{dx}=\\frac{1-2V^{3}}{V^{2}}"
"\\frac{V^{2}}{1-2V^{3}}dV=\\frac{1}{x}dx"
Integrating both sides
"\\int \\frac{V^{2}}{1-2V^{3}}dV=\\int \\frac{1}{x}dx"
Let 1-2V3=t
-6V2dV=dt
"V^{2}dV=-\\frac{1}{6}dt"
"\\frac{-1}{6}\\int \\frac{1}{t}dt=\\int \\frac{1}{x}dx"
"-\\frac{1}{6}ln\\ t=ln\\ x+C"
"-\\frac{1}{6}ln\\ (1-2V^{3})=ln\\ x+C"
"-\\frac{1}{6}ln\\ (1-2(\\frac{y}{x})^{3})=ln\\ x+C"
"-\\frac{1}{6}ln[\\frac{x^{3}-2y^{3}}{x^{3}}]=ln\\ x+C"
(iii)
"(1+sin\\ x)\\frac{dy}{dx}+ycos\\ x=tan\\ x"
"\\frac{dy}{dx}+\\frac{ycos\\ x}{(1+sin\\ x)}=\\frac{tan\\ x}{(1+sin\\ x)}"
This is a linear equation in y
Integrating factor ,I.F="e^{\\int{\\frac{cos\\ x}{1+sin\\ x}}dx}"
"=e^{ln(1+sin\\ x)}"
"=1+sin\\ x"
Multiply through by I.F to get;
"\\frac{d}{dx}[y(1+sin\\ x)]=\\frac{tan\\ x}{1+sin\\ x}(1+sin\\ x)"
"\\frac{d}{dx}[y(1+sin\\ x)]={tan\\ x}"
Integrating;
"y(1+sin\\ x)=\\int tan\\ xdx"
"y(1+sin\\ x)=ln|sec\\ x|+C"
Our solution therefore is;
"y=\\frac{ln|sex\\ x|}{1+sin\\ x}+\\frac{C}{1+sin\\ x}"
(iv)
"x\\frac{dy}{dx}-5y=x^{7}"
"\\frac{dy}{dx}-\\frac{5y}{x}=x^{6}"
This is in the form "\\frac{dy}{dx}+Py=Q"
"P=\\frac{-5}{x},Q=x^{6}"
Integrating factor, I.F="e^{\\int Pdx}"
I.f="e^{-5{\\int \\frac{1}{x}dx}}=e^{-5ln\\ x}=e^{ln\\ x^{-5}}=\\frac{1}{x^{5}}"
"y*I.f=\\int QI.f dx"
"y*\\frac{1}{x^{5}}=\\int x^{6}*\\frac{1}{x^{5}}dx"
"\\frac{y}{x^{5}}=\\int xdx"
"\\frac{y}{x^{5}}=\\frac{x^{2}}{2}+C"
"y=\\frac{x^{7}}{2}+Cx^{5}"
Comments
Leave a comment