(i)
(y3+1)dxdy=x+xy2
(y3+1)dxdy=x(1+y2)
1+y21+y3dy=xdx
Integrate on both sides
∫1+y21+y3dy=∫xdx
Let 1+y2 =t
2ydy=dt
ydy=2dt
y2=(t−1)
∫1+y21dy+∫1+y2y3=∫xdx
tan−1(y)+21∫t(t−1)dt=2x2+C
tan−1(y)+21∫(1−t1)dt=2x2+C
tan−1(y)+21(t−ln t)=2x2+C
Putting the values of t answer becomes;
tan−1(y)+21[(1+y2)−ln(1+y2)]=2x2+C
(ii)
xy2dxdy=x3−y3
dxdy=xy2x3−y3
On dividing the numerator and denominator by x3
dxdy=(xy)21−(xy)3
Let xy=V ⟹y=Vx
dxdy=V+xdxdV
V+xdxdV=V21−V3
xdxdV=V21−V3−V
xdxdV=V21−V3−V3
xdxdV=V21−2V3
1−2V3V2dV=x1dx
Integrating both sides
∫1−2V3V2dV=∫x1dx
Let 1-2V3=t
-6V2dV=dt
V2dV=−61dt
6−1∫t1dt=∫x1dx
−61ln t=ln x+C
−61ln (1−2V3)=ln x+C
−61ln (1−2(xy)3)=ln x+C
−61ln[x3x3−2y3]=ln x+C
(iii)
(1+sin x)dxdy+ycos x=tan x
dxdy+(1+sin x)ycos x=(1+sin x)tan x
This is a linear equation in y
Integrating factor ,I.F=e∫1+sin xcos xdx
=eln(1+sin x)
=1+sin x
Multiply through by I.F to get;
dxd[y(1+sin x)]=1+sin xtan x(1+sin x)
dxd[y(1+sin x)]=tan x
Integrating;
y(1+sin x)=∫tan xdx
y(1+sin x)=ln∣sec x∣+C
Our solution therefore is;
y=1+sin xln∣sex x∣+1+sin xC
(iv)
xdxdy−5y=x7
dxdy−x5y=x6
This is in the form dxdy+Py=Q
P=x−5,Q=x6
Integrating factor, I.F=e∫Pdx
I.f=e−5∫x1dx=e−5ln x=eln x−5=x51
y∗I.f=∫QI.fdx
y∗x51=∫x6∗x51dx
x5y=∫xdx
x5y=2x2+C
y=2x7+Cx5
Comments