Question #247659

Solve the following differential equations: (i) (𝑦 3 + 1) 𝑑𝑦 𝑑𝑥 − 𝑥𝑦 2 = 𝑥, (ii) 𝑥𝑦 2 𝑑𝑦 𝑑𝑥 = 𝑥 3 − 𝑦 3, (iii) (1 + sin 𝑥) 𝑑𝑦 𝑑𝑥 + 𝑦 cos 𝑥 = tan 𝑥, (iv) 𝑥 𝑑𝑦 𝑑𝑥 − 5𝑦 = 𝑥 7.


1
Expert's answer
2021-10-22T11:06:52-0400

(i)

(y3+1)dydx=x+xy2(y^{3}+1)\frac{dy}{dx}=x+xy^{2}

(y3+1)dydx=x(1+y2)(y^{3}+1)\frac{dy}{dx}=x(1+y^{2})

1+y31+y2dy=xdx\frac{1+y^{3}}{1+y^{2}}dy=xdx

Integrate on both sides

1+y31+y2dy=xdx\int \frac{1+y^{3}}{1+y^{2}}dy=\int xdx

Let 1+y21+y^{2} =t

2ydy=dt

ydy=dt2\frac{dt}{2}

y2=(t1)y^{2}=(t-1)

11+y2dy+y31+y2=xdx\int \frac{1}{1+y^{2}}dy+\int \frac{y^{3}}{1+y^{2}}=\int xdx

tan1(y)+12(t1)tdt=x22+Ctan^{-1}(y)+\frac{1}{2}\int \frac{(t-1)}{t}dt=\frac{x^{2}}{2}+C

tan1(y)+12(11t)dt=x22+Ctan^{-1}(y)+\frac{1}{2}\int (1-\frac{1}{t})dt=\frac{x^{2}}{2}+C

tan1(y)+12(tln t)=x22+Ctan^{-1}(y)+\frac{1}{2}(t-ln\ t)=\frac{x^{2}}{2}+C

Putting the values of t answer becomes;

tan1(y)+12[(1+y2)ln(1+y2)]=x22+Ctan^{-1}(y)+\frac{1}{2}[(1+y^{2})-ln(1+y^{2})]=\frac{x^{2}}{2}+C


(ii)

xy2dydx=x3y3xy^{2}\frac{dy}{dx}=x^{3}-y^{3}

dydx=x3y3xy2\frac{dy}{dx}=\frac{x^{3}-y^{3}}{xy^{2}}

On dividing the numerator and denominator by x3

dydx=1(yx)3(yx)2\frac{dy}{dx}=\frac{1-(\frac{y}{x})^{3}}{(\frac{y}{x})^{2}}

Let yx=V\frac{y}{x}=V     y=Vx\implies y=Vx

dydx=V+xdVdx\frac{dy}{dx}=V+x\frac{dV}{dx}

V+xdVdx=1V3V2V+x\frac{dV}{dx}=\frac{1-V^{3}}{V^{2}}

xdVdx=1V3V2Vx\frac{dV}{dx}=\frac{1-V^{3}}{V^{2}}-V

xdVdx=1V3V3V2x\frac{dV}{dx}=\frac{1-V^{3}-V^{3}}{V^{2}}

xdVdx=12V3V2x\frac{dV}{dx}=\frac{1-2V^{3}}{V^{2}}

V212V3dV=1xdx\frac{V^{2}}{1-2V^{3}}dV=\frac{1}{x}dx

Integrating both sides

V212V3dV=1xdx\int \frac{V^{2}}{1-2V^{3}}dV=\int \frac{1}{x}dx

Let 1-2V3=t

-6V2dV=dt

V2dV=16dtV^{2}dV=-\frac{1}{6}dt

161tdt=1xdx\frac{-1}{6}\int \frac{1}{t}dt=\int \frac{1}{x}dx

16ln t=ln x+C-\frac{1}{6}ln\ t=ln\ x+C

16ln (12V3)=ln x+C-\frac{1}{6}ln\ (1-2V^{3})=ln\ x+C

16ln (12(yx)3)=ln x+C-\frac{1}{6}ln\ (1-2(\frac{y}{x})^{3})=ln\ x+C

16ln[x32y3x3]=ln x+C-\frac{1}{6}ln[\frac{x^{3}-2y^{3}}{x^{3}}]=ln\ x+C


(iii)

(1+sin x)dydx+ycos x=tan x(1+sin\ x)\frac{dy}{dx}+ycos\ x=tan\ x

dydx+ycos x(1+sin x)=tan x(1+sin x)\frac{dy}{dx}+\frac{ycos\ x}{(1+sin\ x)}=\frac{tan\ x}{(1+sin\ x)}

This is a linear equation in y

Integrating factor ,I.F=ecos x1+sin xdxe^{\int{\frac{cos\ x}{1+sin\ x}}dx}

=eln(1+sin x)=e^{ln(1+sin\ x)}

=1+sin x=1+sin\ x

Multiply through by I.F to get;

ddx[y(1+sin x)]=tan x1+sin x(1+sin x)\frac{d}{dx}[y(1+sin\ x)]=\frac{tan\ x}{1+sin\ x}(1+sin\ x)

ddx[y(1+sin x)]=tan x\frac{d}{dx}[y(1+sin\ x)]={tan\ x}

Integrating;

y(1+sin x)=tan xdxy(1+sin\ x)=\int tan\ xdx

y(1+sin x)=lnsec x+Cy(1+sin\ x)=ln|sec\ x|+C

Our solution therefore is;

y=lnsex x1+sin x+C1+sin xy=\frac{ln|sex\ x|}{1+sin\ x}+\frac{C}{1+sin\ x}

(iv)

xdydx5y=x7x\frac{dy}{dx}-5y=x^{7}

dydx5yx=x6\frac{dy}{dx}-\frac{5y}{x}=x^{6}

This is in the form dydx+Py=Q\frac{dy}{dx}+Py=Q

P=5x,Q=x6P=\frac{-5}{x},Q=x^{6}

Integrating factor, I.F=ePdxe^{\int Pdx}

I.f=e51xdx=e5ln x=eln x5=1x5e^{-5{\int \frac{1}{x}dx}}=e^{-5ln\ x}=e^{ln\ x^{-5}}=\frac{1}{x^{5}}

yI.f=QI.fdxy*I.f=\int QI.f dx

y1x5=x61x5dxy*\frac{1}{x^{5}}=\int x^{6}*\frac{1}{x^{5}}dx

yx5=xdx\frac{y}{x^{5}}=\int xdx

yx5=x22+C\frac{y}{x^{5}}=\frac{x^{2}}{2}+C

y=x72+Cx5y=\frac{x^{7}}{2}+Cx^{5}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS