y2=49(1+x2)3y=23(1+x2)32y′=2x(1+x2)12L=∫031+(2x(1+x2)12)2dx==∫031+4x2(1+x2)dx==∫031+4x2+4x4dx==∫03(1+2x2)2dx==∫03(1+2x2)dx=(x+23x3)∣03=3+23⋅27=21y^2=\frac{4}{9}(1+x^2)^3\\ y=\frac{2}{3}(1+x^2)^\frac{3}{2}\\ y'=2x(1+x^2)^\frac{1}{2}\\ L=\int^{3}_{0}\sqrt{1+(2x(1+x^2)^\frac{1}{2})^2}dx=\\ =\int^{3}_{0}\sqrt{1+4x^2(1+x^2)}dx=\\ =\int^{3}_{0}\sqrt{1+4x^2+4x^4}dx=\\ =\int^{3}_{0}\sqrt{(1+2x^2)^{2}}dx=\\ =\int^{3}_{0}(1+2x^2)dx=(x+\frac{2}{3}x^3)|^3_0=3+\frac{2}{3}\cdot 27=21y2=94(1+x2)3y=32(1+x2)23y′=2x(1+x2)21L=∫031+(2x(1+x2)21)2dx==∫031+4x2(1+x2)dx==∫031+4x2+4x4dx==∫03(1+2x2)2dx==∫03(1+2x2)dx=(x+32x3)∣03=3+32⋅27=21
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments