Question #244081
  1. (a) Give the definition of continuity of f at a. (b) Give the definition of the derivative of f at a.
  2. For the function f(x) =  x 2 − x + 1 1 − x − x 2 if x < 0, if x ≥ 0

(a) Use your definition of continuity in 1(a) and the properties of limits to determine if f is continuous at a = 0. Show your work.

(b) Use your definition of derivative in 1(b) and the properties of limits to determine if f has a derivative at a = 0. Show your work.


1
Expert's answer
2021-09-29T17:18:07-0400

1(a) A function f(x) is said to be continuous at a point x = a, in its domain if the following three conditions are satisfied: f(a) exists (i.e. the value of f(a) is finite) limxaf(x)\lim\limits_{x\rightarrow a} f(x) exists (i.e. the right-hand limit = left-hand limit, and both are finite) limxaf(x)=f(a)\lim\limits_{x\rightarrow a} f(x)=f(a)


1(b) For y=f(x)y=f(x) , the derivative of  y  (with respect to  x  ) is

 

y=dydx=limΔx0ΔyΔxf(x)=limΔx0f(x+Δx)f(x)Δxf(x)=limh0f(x+h)f(x)hf(x)=limuxf(u)f(x)ux\begin{aligned} &y^{\prime}=\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} \\ &f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\ &f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\ &f^{\prime}(x)=\lim _{u \rightarrow x} \frac{f(u)-f(x)}{u-x} \end{aligned}



2(a) Given that f(x)={x2x+1if x<01xx2if x0f(x) = \begin{cases} x^2-x+1 &\text{if } x<0 \\ 1-x-x^2 &\text{if } x\geq0 \end{cases}


Calculating left hand limit:

limx0f(x)=limx0(x2x+1)=00+1=1\lim\limits_{x\rightarrow 0^-} f(x)\\ =\lim\limits_{x\rightarrow 0^-} (x^2-x+1)\\ =0-0+1\\ =1

Calculating right hand limit:

limx0+f(x)=limx0+(1xx2)=100=1\lim\limits_{x\rightarrow 0^+} f(x)\\ =\lim\limits_{x\rightarrow 0^+} (1-x-x^2)\\ =1-0-0 \\ =1


Since, LHL=RHL=f(0)

Therefore, f(x) is continuous at x = 0.


2(b) Differentiating f(x) w.r.t. (x), we get:

f(x)={2x1if x<012xif x0f'(x) = \begin{cases} 2x-1 &\text{if } x<0 \\ -1-2x &\text{if } x\geq0 \end{cases}


Calculating left-hand derivative, we get:

limx0f(x)=limx0(2x1)=01=1\lim\limits_{x\rightarrow 0^-} f'(x)\\ =\lim\limits_{x\rightarrow 0^-} (2x-1)\\ =0-1\\ =-1

Calculating right-hand derivative, we get:

limx0+f(x)=limx0+(12x)=10=1\lim\limits_{x\rightarrow 0^+} f'(x)\\ =\lim\limits_{x\rightarrow 0^+} (-1-2x)\\ =-1-0\\ =-1

Since, LHD=RHD


Therefore, f(x) is differentiable at x = 0.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS