(a) Use your definition of continuity in 1(a) and the properties of limits to determine if f is continuous at a = 0. Show your work.
(b) Use your definition of derivative in 1(b) and the properties of limits to determine if f has a derivative at a = 0. Show your work.
1(a) A function f(x) is said to be continuous at a point x = a, in its domain if the following three conditions are satisfied: f(a) exists (i.e. the value of f(a) is finite) "\\lim\\limits_{x\\rightarrow a} f(x)" exists (i.e. the right-hand limit = left-hand limit, and both are finite) "\\lim\\limits_{x\\rightarrow a} f(x)=f(a)"
1(b) For "y=f(x)" , the derivative of y (with respect to x ) is
"\\begin{aligned}\n\n&y^{\\prime}=\\frac{d y}{d x}=\\lim _{\\Delta x \\rightarrow 0} \\frac{\\Delta y}{\\Delta x} \\\\\n\n&f^{\\prime}(x)=\\lim _{\\Delta x \\rightarrow 0} \\frac{f(x+\\Delta x)-f(x)}{\\Delta x} \\\\\n\n&f^{\\prime}(x)=\\lim _{h \\rightarrow 0} \\frac{f(x+h)-f(x)}{h} \\\\\n\n&f^{\\prime}(x)=\\lim _{u \\rightarrow x} \\frac{f(u)-f(x)}{u-x}\n\n\\end{aligned}"
2(a) Given that "f(x) = \\begin{cases}\n x^2-x+1 &\\text{if } x<0 \\\\\n 1-x-x^2 &\\text{if } x\\geq0\n\\end{cases}"
Calculating left hand limit:
"\\lim\\limits_{x\\rightarrow 0^-} f(x)\\\\\n=\\lim\\limits_{x\\rightarrow 0^-} (x^2-x+1)\\\\\n=0-0+1\\\\\n=1"
Calculating right hand limit:
"\\lim\\limits_{x\\rightarrow 0^+} f(x)\\\\\n=\\lim\\limits_{x\\rightarrow 0^+} (1-x-x^2)\\\\\n=1-0-0 \\\\\n=1"
Since, LHL=RHL=f(0)
Therefore, f(x) is continuous at x = 0.
2(b) Differentiating f(x) w.r.t. (x), we get:
"f'(x) = \\begin{cases}\n 2x-1 &\\text{if } x<0 \\\\\n -1-2x &\\text{if } x\\geq0\n\\end{cases}"
Calculating left-hand derivative, we get:
"\\lim\\limits_{x\\rightarrow 0^-} f'(x)\\\\\n=\\lim\\limits_{x\\rightarrow 0^-} (2x-1)\\\\\n=0-1\\\\\n=-1"
Calculating right-hand derivative, we get:
"\\lim\\limits_{x\\rightarrow 0^+} f'(x)\\\\\n=\\lim\\limits_{x\\rightarrow 0^+} (-1-2x)\\\\\n=-1-0\\\\\n=-1"
Since, LHD=RHD
Therefore, f(x) is differentiable at x = 0.
Comments
Leave a comment