Evaluate the limit. Lim (3x^3-4x+2)/(w^3-5). x-->2
We substitute x = 2 on the expresison and calculate the limit as:
"\\lim\\limits_{x\\, \\to \\,2} \\cfrac{3x^3-4x+2}{x^3-5}=\\cfrac{3(2)^3-4(2)+2}{(2)^3-5}\n\\\\ \\lim\\limits_{x\\, \\to \\,2} \\cfrac{3x^3-4x+2}{x^3-5}=\\cfrac{24-8+2}{8-5}\n\\\\ \\lim\\limits_{x\\, \\to \\,2} \\cfrac{3x^3-4x+2}{x^3-5}=\\cfrac{18}{3}=6"
In conclusion, the limit is equal to 6.
Comments
Leave a comment