Question #243701

TOPIC: General Application of Derivatives. Draw the necessary figure and indicate the dimension given.


  1. The perimeter of an isosceles triangle is 28 cm. What is the maximum area possible?
1
Expert's answer
2021-09-29T11:36:50-0400

Let x=x= base of an isosceles triangle, y=y= its leg. Then the perimeter is


P=x+2y=28=>x=282yP=x+2y=28=>x=28-2y

By the Heron's formula the area AA of the triangle is


A=P2(P2x)(P2y)(P2y)A=\sqrt{\dfrac{P}{2}(\dfrac{P}{2}-x)(\dfrac{P}{2}-y)(\dfrac{P}{2}-y)}

Substitute


A2=F(y)=14(14(282y))(14y)2A^2=F(y)=14(14-(28-2y))(14-y)^2

F(y)=28(y7)(y14)2,7<y<14F(y)=28(y-7)(y-14)^2, 7<y<14

Find the critical number(s)


F(y)=(28(y7)(y14)2)F'(y)=(28(y-7)(y-14)^2)'

=28(y14)2+28(2)(y7)(y14)=28(y-14)^2+28(2)(y-7)(y-14)

=28(y14)(y14+2y14)=28(y-14)(y-14+2y-14)

=28(y14)(3y28)=28(y-14)(3y-28)


F(y)=0=>28(y14)(3y28)=0F'(y)=0=>28(y-14)(3y-28)=0

y1=14,y2=283y_1=14, y_2=\dfrac{28}{3}

Critical numbers: 283,14.\dfrac{28}{3}, 14.

F(7)=0,F(14)=0F(7)=0, F(14)=0


F(283)=28(2837)(28314)2=3841627F(\dfrac{28}{3})=28(\dfrac{28}{3}-7)(\dfrac{28}{3}-14)^2=\dfrac{38416}{27}

The function F(y)F(y) has the absolute maximum with value of 3841627\dfrac{38416}{27} on [7,14][7, 14] at y=283.y=\dfrac{28}{3}.


x=282(283)=283.x=28-2(\dfrac{28}{3})=\dfrac{28}{3}.

Therefore the absolute area with given perimeter has equiliteral triangle





x=y=y=283 cmx=y=y=\dfrac{28}{3}\ cm

Area=A=19639 cm2Area=A=\dfrac{196\sqrt{3}}{9} \ cm^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS