Let x = x= x = base of an isosceles triangle, y = y= y = its leg. Then the perimeter is
P = x + 2 y = 28 = > x = 28 − 2 y P=x+2y=28=>x=28-2y P = x + 2 y = 28 => x = 28 − 2 y By the Heron's formula the area A A A of the triangle is
A = P 2 ( P 2 − x ) ( P 2 − y ) ( P 2 − y ) A=\sqrt{\dfrac{P}{2}(\dfrac{P}{2}-x)(\dfrac{P}{2}-y)(\dfrac{P}{2}-y)} A = 2 P ( 2 P − x ) ( 2 P − y ) ( 2 P − y ) Substitute
A 2 = F ( y ) = 14 ( 14 − ( 28 − 2 y ) ) ( 14 − y ) 2 A^2=F(y)=14(14-(28-2y))(14-y)^2 A 2 = F ( y ) = 14 ( 14 − ( 28 − 2 y )) ( 14 − y ) 2
F ( y ) = 28 ( y − 7 ) ( y − 14 ) 2 , 7 < y < 14 F(y)=28(y-7)(y-14)^2, 7<y<14 F ( y ) = 28 ( y − 7 ) ( y − 14 ) 2 , 7 < y < 14 Find the critical number(s)
F ′ ( y ) = ( 28 ( y − 7 ) ( y − 14 ) 2 ) ′ F'(y)=(28(y-7)(y-14)^2)' F ′ ( y ) = ( 28 ( y − 7 ) ( y − 14 ) 2 ) ′
= 28 ( y − 14 ) 2 + 28 ( 2 ) ( y − 7 ) ( y − 14 ) =28(y-14)^2+28(2)(y-7)(y-14) = 28 ( y − 14 ) 2 + 28 ( 2 ) ( y − 7 ) ( y − 14 )
= 28 ( y − 14 ) ( y − 14 + 2 y − 14 ) =28(y-14)(y-14+2y-14) = 28 ( y − 14 ) ( y − 14 + 2 y − 14 )
= 28 ( y − 14 ) ( 3 y − 28 ) =28(y-14)(3y-28) = 28 ( y − 14 ) ( 3 y − 28 )
F ′ ( y ) = 0 = > 28 ( y − 14 ) ( 3 y − 28 ) = 0 F'(y)=0=>28(y-14)(3y-28)=0 F ′ ( y ) = 0 => 28 ( y − 14 ) ( 3 y − 28 ) = 0
y 1 = 14 , y 2 = 28 3 y_1=14, y_2=\dfrac{28}{3} y 1 = 14 , y 2 = 3 28 Critical numbers: 28 3 , 14. \dfrac{28}{3}, 14. 3 28 , 14.
F ( 7 ) = 0 , F ( 14 ) = 0 F(7)=0, F(14)=0 F ( 7 ) = 0 , F ( 14 ) = 0
F ( 28 3 ) = 28 ( 28 3 − 7 ) ( 28 3 − 14 ) 2 = 38416 27 F(\dfrac{28}{3})=28(\dfrac{28}{3}-7)(\dfrac{28}{3}-14)^2=\dfrac{38416}{27} F ( 3 28 ) = 28 ( 3 28 − 7 ) ( 3 28 − 14 ) 2 = 27 38416 The function F ( y ) F(y) F ( y ) has the absolute maximum with value of 38416 27 \dfrac{38416}{27} 27 38416 on [ 7 , 14 ] [7, 14] [ 7 , 14 ] at y = 28 3 . y=\dfrac{28}{3}. y = 3 28 .
x = 28 − 2 ( 28 3 ) = 28 3 . x=28-2(\dfrac{28}{3})=\dfrac{28}{3}. x = 28 − 2 ( 3 28 ) = 3 28 . Therefore the absolute area with given perimeter has equiliteral triangle
x = y = y = 28 3 c m x=y=y=\dfrac{28}{3}\ cm x = y = y = 3 28 c m
A r e a = A = 196 3 9 c m 2 Area=A=\dfrac{196\sqrt{3}}{9} \ cm^2 A re a = A = 9 196 3 c m 2
Comments