Let x= base of an isosceles triangle, y= its leg. Then the perimeter is
P=x+2y=28=>x=28−2y By the Heron's formula the area A of the triangle is
A=2P(2P−x)(2P−y)(2P−y) Substitute
A2=F(y)=14(14−(28−2y))(14−y)2
F(y)=28(y−7)(y−14)2,7<y<14 Find the critical number(s)
F′(y)=(28(y−7)(y−14)2)′
=28(y−14)2+28(2)(y−7)(y−14)
=28(y−14)(y−14+2y−14)
=28(y−14)(3y−28)
F′(y)=0=>28(y−14)(3y−28)=0
y1=14,y2=328Critical numbers: 328,14.
F(7)=0,F(14)=0
F(328)=28(328−7)(328−14)2=2738416 The function F(y) has the absolute maximum with value of 2738416 on [7,14] at y=328.
x=28−2(328)=328. Therefore the absolute area with given perimeter has equiliteral triangle
x=y=y=328 cm
Area=A=91963 cm2
Comments