For the function f(x) = 2x − 3 x (a) Use the limit definition of the derivative to find f 0 (x). (b) Find the equation of the line tangent to f(x) at x = 3.
Given that "f(x)=2x-3"
(a) For "y=f(x)" , the derivative of y (with respect to x ) is
"\\begin{aligned}\n\n&y^{\\prime}=\\frac{d y}{d x}=\\lim _{\\Delta x \\rightarrow 0} \\frac{\\Delta y}{\\Delta x} \\\\\n\n&f^{\\prime}(x)=\\lim _{\\Delta x \\rightarrow 0} \\frac{f(x+\\Delta x)-f(x)}{\\Delta x} \\\\\n\n&f^{\\prime}(x)=\\lim _{h \\rightarrow 0} \\frac{f(x+h)-f(x)}{h} \\\\\n\n&f^{\\prime}(x)=\\lim _{u \\rightarrow x} \\frac{f(u)-f(x)}{u-x}\n\n\\end{aligned}"
"\\therefore f'(0)= \\begin{aligned}\\lim _{h \\rightarrow 0} \\frac{f(x+h)-f(x)}{h} \\\\\n\\end{aligned}"
"\\Rightarrow f'(0)=\\lim\\limits_{h \\rightarrow 0} \\frac{2(x+h)-3-2x+3}{h} \\\\\n\\Rightarrow f'(0)=\\lim\\limits_{h \\rightarrow 0} \\frac{2h}{h}\\\\\n\\Rightarrow f'(0)=2"
(b) Given that "f(x)=2x-3"
"\\therefore f'(x)=2\\\\\nSo, f'(3)=2"
At "x=3," we get: "y=6-3=3"
Equation of tangent:
"y-3=2(x-3)\\\\\n\\Rightarrow y=2x+3"
Comments
Leave a comment