Answer to Question #244078 in Calculus for Princewill Unuigbe

Question #244078

For the function f(x) = 2x − 3 x (a) Use the limit definition of the derivative to find f 0 (x). (b) Find the equation of the line tangent to f(x) at x = 3.


1
Expert's answer
2021-09-30T00:35:37-0400

Given that "f(x)=2x-3"

(a) For "y=f(x)" , the derivative of y (with respect to x ) is

 

"\\begin{aligned}\n\n&y^{\\prime}=\\frac{d y}{d x}=\\lim _{\\Delta x \\rightarrow 0} \\frac{\\Delta y}{\\Delta x} \\\\\n\n&f^{\\prime}(x)=\\lim _{\\Delta x \\rightarrow 0} \\frac{f(x+\\Delta x)-f(x)}{\\Delta x} \\\\\n\n&f^{\\prime}(x)=\\lim _{h \\rightarrow 0} \\frac{f(x+h)-f(x)}{h} \\\\\n\n&f^{\\prime}(x)=\\lim _{u \\rightarrow x} \\frac{f(u)-f(x)}{u-x}\n\n\\end{aligned}"

"\\therefore f'(0)= \\begin{aligned}\\lim _{h \\rightarrow 0} \\frac{f(x+h)-f(x)}{h} \\\\\n\\end{aligned}"

"\\Rightarrow f'(0)=\\lim\\limits_{h \\rightarrow 0} \\frac{2(x+h)-3-2x+3}{h} \\\\\n\\Rightarrow f'(0)=\\lim\\limits_{h \\rightarrow 0} \\frac{2h}{h}\\\\\n\\Rightarrow f'(0)=2"


(b) Given that "f(x)=2x-3"

"\\therefore f'(x)=2\\\\\nSo, f'(3)=2"

At "x=3," we get: "y=6-3=3"

Equation of tangent:

"y-3=2(x-3)\\\\\n\\Rightarrow y=2x+3"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS