Question #244078

For the function f(x) = 2x − 3 x (a) Use the limit definition of the derivative to find f 0 (x). (b) Find the equation of the line tangent to f(x) at x = 3.


1
Expert's answer
2021-09-30T00:35:37-0400

Given that f(x)=2x3f(x)=2x-3

(a) For y=f(x)y=f(x) , the derivative of y (with respect to x ) is

 

y=dydx=limΔx0ΔyΔxf(x)=limΔx0f(x+Δx)f(x)Δxf(x)=limh0f(x+h)f(x)hf(x)=limuxf(u)f(x)ux\begin{aligned} &y^{\prime}=\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} \\ &f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\ &f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\ &f^{\prime}(x)=\lim _{u \rightarrow x} \frac{f(u)-f(x)}{u-x} \end{aligned}

f(0)=limh0f(x+h)f(x)h\therefore f'(0)= \begin{aligned}\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\ \end{aligned}

f(0)=limh02(x+h)32x+3hf(0)=limh02hhf(0)=2\Rightarrow f'(0)=\lim\limits_{h \rightarrow 0} \frac{2(x+h)-3-2x+3}{h} \\ \Rightarrow f'(0)=\lim\limits_{h \rightarrow 0} \frac{2h}{h}\\ \Rightarrow f'(0)=2


(b) Given that f(x)=2x3f(x)=2x-3

f(x)=2So,f(3)=2\therefore f'(x)=2\\ So, f'(3)=2

At x=3,x=3, we get: y=63=3y=6-3=3

Equation of tangent:

y3=2(x3)y=2x+3y-3=2(x-3)\\ \Rightarrow y=2x+3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS