Given that f(x)=2x−3
(a) For y=f(x) , the derivative of y (with respect to x ) is
y′=dxdy=Δx→0limΔxΔyf′(x)=Δx→0limΔxf(x+Δx)−f(x)f′(x)=h→0limhf(x+h)−f(x)f′(x)=u→xlimu−xf(u)−f(x)
∴f′(0)=h→0limhf(x+h)−f(x)
⇒f′(0)=h→0limh2(x+h)−3−2x+3⇒f′(0)=h→0limh2h⇒f′(0)=2
(b) Given that f(x)=2x−3
∴f′(x)=2So,f′(3)=2
At x=3, we get: y=6−3=3
Equation of tangent:
y−3=2(x−3)⇒y=2x+3
Comments