Let β{π(π‘)} = πΉ(π ). Show that π(π‘) = β 1 π‘ β β1 {πΉ β² (π )} Thus, if we know how to invert πΉ β² (π ) then we know how to invert πΉ(π ). Use this information to find the Laplace inverse transform of (i) arctan ( π π ), (ii) ln ( π +π π βπ ).Β
"F(s)=\\int^{\\infin}_0e^{-ts}f(t)dt"
"F'(s)=e^{-ts}f(t)"
"L^{-1}(F(s))=f(t)"
"L^{-1}(F'(s))=f(t)\/(-t)"
"f(t)=-tL^{-1}(F'(s))"
i)
"F'(s)=\\frac{a}{1+s^2}"
"f(t)=-atsint"
ii)
"F'(s)=\\frac{1}{s+a}-\\frac{1}{s-a}"
"f(t)=-t(e^{-at}-e^{at})"
Comments
Leave a comment