Question #243674

Let ℒ{𝑓(𝑡)} = 𝐹(𝑠). Show that 𝑓(𝑡) = − 1 𝑡 ℒ −1 {𝐹 ′ (𝑠)} Thus, if we know how to invert 𝐹 ′ (𝑠) then we know how to invert 𝐹(𝑠). Use this information to find the Laplace inverse transform of (i) arctan ( 𝑎 𝑠 ), (ii) ln ( 𝑠+𝑎 𝑠−𝑎 ). 


1
Expert's answer
2021-10-01T04:34:27-0400

F(s)=0etsf(t)dtF(s)=\int^{\infin}_0e^{-ts}f(t)dt


F(s)=etsf(t)F'(s)=e^{-ts}f(t)

L1(F(s))=f(t)L^{-1}(F(s))=f(t)

L1(F(s))=f(t)/(t)L^{-1}(F'(s))=f(t)/(-t)

f(t)=tL1(F(s))f(t)=-tL^{-1}(F'(s))


i)

F(s)=a1+s2F'(s)=\frac{a}{1+s^2}

f(t)=atsintf(t)=-atsint


ii)

F(s)=1s+a1saF'(s)=\frac{1}{s+a}-\frac{1}{s-a}

f(t)=t(eateat)f(t)=-t(e^{-at}-e^{at})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS