Question #243483
find the maximum height of the curve
y = 4sin x - 3cos x above the x axis.
1
Expert's answer
2021-09-29T00:29:06-0400

Find the maximum height of the curve y=4sinx3cosxy = 4\sin x - 3\cos x above the xx axis.


(4)2+(3)2=5\sqrt{(4)^2+(3)^2}=5

y=5(45sinx35cosx)y =5( \dfrac{4}{5}\sin x - \dfrac{3}{5}\cos x)

Let cosθ=45,sinθ=35,θ=sin1(35).\cos \theta=\dfrac{4}{5}, \sin\theta=\dfrac{3}{5}, \theta=\sin^{-1}(\dfrac{3}{5}).

Then

45sinx35cosx=sin(xθ),θ=sin1(35)\dfrac{4}{5}\sin x - \dfrac{3}{5}\cos x=\sin(x-\theta), \theta=\sin^{-1}(\dfrac{3}{5})

y=5sin1(35)y=5\sin^{-1}(\dfrac{3}{5})

1sin1(35)1-1\leq\sin^{-1}(\dfrac{3}{5})\leq 1

5y5-5\leq y\leq 5

The maximum height of the curve of the curve y=4sinx3cosxy = 4\sin x - 3\cos x above the xx axis is 5.5.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS