Find the maximum height of the curve "y = 4\\sin x - 3\\cos x" above the "x" axis.
"y =5( \\dfrac{4}{5}\\sin x - \\dfrac{3}{5}\\cos x)"
Let "\\cos \\theta=\\dfrac{4}{5}, \\sin\\theta=\\dfrac{3}{5}, \\theta=\\sin^{-1}(\\dfrac{3}{5})."
Then
"\\dfrac{4}{5}\\sin x - \\dfrac{3}{5}\\cos x=\\sin(x-\\theta), \\theta=\\sin^{-1}(\\dfrac{3}{5})""y=5\\sin^{-1}(\\dfrac{3}{5})"
"-1\\leq\\sin^{-1}(\\dfrac{3}{5})\\leq 1"
"-5\\leq y\\leq 5"
The maximum height of the curve of the curve "y = 4\\sin x - 3\\cos x" above the "x" axis is "5."
Comments
Leave a comment