Find the maximum height of the curve y=4sinx−3cosx above the x axis.
(4)2+(3)2=5
y=5(54sinx−53cosx) Let cosθ=54,sinθ=53,θ=sin−1(53).
Then
54sinx−53cosx=sin(x−θ),θ=sin−1(53)
y=5sin−1(53)
−1≤sin−1(53)≤1
−5≤y≤5The maximum height of the curve of the curve y=4sinx−3cosx above the x axis is 5.
Comments