Question #242928

Evaluate the double integral by polar coordinates. Integral D 8- 2x² - 2y²dA,


1
Expert's answer
2021-09-28T15:05:40-0400

(82x22y2)dA=(82x22y2)(r)(dθ)(dr)=(82(x2+y2))(r)(dθ)(dr)\iint(8-2x^2-2y^2)dA\\ =\iint(8-2x^2-2y^2)(r)(d\theta)(dr)\\ =\iint(8-2(x^2+y^2))(r)(d\theta)(dr)

Put x=rcosθ,y=rsinθx=rcos\theta,y=rsin\theta

x2+y2=r2\therefore x^2+y^2=r^2

So, double integral us reduced to:

(82r2)(r)(dθ)(dr)=(8r2r3)(dθ)(dr)=(4r2r42+c)(dθ)=4r3θr4θ2+cθ+d\iint(8-2r^2)(r)(d\theta)(dr)\\ =\iint(8r-2r^3)(d\theta)(dr)\\ =\int(4r^2-\frac{r^4}{2}+c)(d\theta)\\ =4r^3\theta-\frac{r^4\theta }{2}+c\theta+d \\

where c,dc,d are constants of integration.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS