Evaluate the double integral by polar coordinates. Integral D 8- 2x² - 2y²dA,
∬(8−2x2−2y2)dA=∬(8−2x2−2y2)(r)(dθ)(dr)=∬(8−2(x2+y2))(r)(dθ)(dr)\iint(8-2x^2-2y^2)dA\\ =\iint(8-2x^2-2y^2)(r)(d\theta)(dr)\\ =\iint(8-2(x^2+y^2))(r)(d\theta)(dr)∬(8−2x2−2y2)dA=∬(8−2x2−2y2)(r)(dθ)(dr)=∬(8−2(x2+y2))(r)(dθ)(dr)
Put x=rcosθ,y=rsinθx=rcos\theta,y=rsin\thetax=rcosθ,y=rsinθ
∴x2+y2=r2\therefore x^2+y^2=r^2∴x2+y2=r2
So, double integral us reduced to:
∬(8−2r2)(r)(dθ)(dr)=∬(8r−2r3)(dθ)(dr)=∫(4r2−r42+c)(dθ)=4r3θ−r4θ2+cθ+d\iint(8-2r^2)(r)(d\theta)(dr)\\ =\iint(8r-2r^3)(d\theta)(dr)\\ =\int(4r^2-\frac{r^4}{2}+c)(d\theta)\\ =4r^3\theta-\frac{r^4\theta }{2}+c\theta+d \\∬(8−2r2)(r)(dθ)(dr)=∬(8r−2r3)(dθ)(dr)=∫(4r2−2r4+c)(dθ)=4r3θ−2r4θ+cθ+d
where c,dc,dc,d are constants of integration.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments