Evaluate the double integral by polar coordinates. Integral D 8- 2x² - 2y²dA,
"\\iint(8-2x^2-2y^2)dA\\\\\n=\\iint(8-2x^2-2y^2)(r)(d\\theta)(dr)\\\\\n=\\iint(8-2(x^2+y^2))(r)(d\\theta)(dr)"
Put "x=rcos\\theta,y=rsin\\theta"
"\\therefore x^2+y^2=r^2"
So, double integral us reduced to:
"\\iint(8-2r^2)(r)(d\\theta)(dr)\\\\\n=\\iint(8r-2r^3)(d\\theta)(dr)\\\\\n=\\int(4r^2-\\frac{r^4}{2}+c)(d\\theta)\\\\\n=4r^3\\theta-\\frac{r^4\\theta }{2}+c\\theta+d \n\\\\"
where "c,d" are constants of integration.
Comments
Leave a comment