1.
mass:
"m=\\int^6_0(2x+3)dx=(x^2+3x)|^6_0=54" kg
center of mass:
"\\overline{x}=M_y\/m"
"M_y=\\int x\\rho(x)dx=\\int^6_0x(2x+3)dx=(2x^3\/3+3x^2\/2)|^6_0=198"
"\\overline{x}=198\/54=3.67" m
2.
mass:
"m=\\int^9_0(4x+1)dx=(2x^2+x)|^9_0=171" slugs
center of mass:
"\\overline{x}=M_y\/m"
"M_y=\\int x\\rho(x)dx=\\int^9_0x(4x+1)dx=(4x^3\/3+x^2\/2)|^9_0=1012.5"
"\\overline{x}=1012.5\/171=5.92" inches
3.
the linear density of the rod:
"(3+x\/12)" g/cm
mass:
"m=\\int^{12}_0(3+x\/12)dx=(x^2\/24+3x)|^{12}_0=42" g
center of mass:
"\\overline{x}=M_y\/m"
"M_y=\\int x\\rho(x)dx=\\int^{12}_0x(3+x\/12)dx=(x^3\/36+3x^2\/2)|^{12}_0=264"
"\\overline{x}=264\/42=6.29" cm
4.
the linear density of the rod:
"\\frac{3}{4}(10-x)" kg/m
mass:
"m=\\int^{6}_0\\frac{3}{4}(10-x)dx=(15x\/2-3x^2\/8)|^{6}_0=31.5" kg
center of mass:
"\\overline{x}=M_y\/m"
"M_y=\\int x\\rho(x)dx=\\int^{6}_0\\frac{3}{4}x(10-x)dx=(15x^2\/4-x^3\/4)|^{6}_0=81"
"\\overline{x}=81\/31.5=2.57" m
5.
the linear density of the rod:
"(x^3\/4)" slugs/ft
mass:
"m=\\int^{4}_0(x^3\/4)dx=(x^4\/16)|^{4}_0=16" slugs
center of mass:
"\\overline{x}=M_y\/m"
"M_y=\\int x\\rho(x)dx=\\int^{4}_0x(x^3\/4)dx=(x^5\/20)|^{4}_0=51.2"
"\\overline{x}=51.2\/16=3.20" ft
Comments
Leave a comment