Question #242917
Find the total mass of the given rod and the center of mass.

1. The length of a rod is 6 m and the linear density of the rod at a point x meters from one end is (2x + 3) kg/m.

2. The length of a rod is 9 in. and the linear density of the rod at a point x inches from one end is (4x + 1) slugs/in.

3. The length of a rod is 12 cm, and the measure of the linear density at a point is a linear function of the measure of the distance from the left end of the rod. The linear density at the left end is 3 g/cm and at the right end is 4 g/cm.

4. The measure of the linear density at any point of a rod 6 m long varies directly as the distance from the point to an external point in the line of the rod and 4 m from an end, where the density is 3 kg/m.

5. The measure of the linear density at a point of a rod varies directly as the third power of the measure of the distance of the point from one end. The length of the rod is 4 ft and the linear density is 2 slugs/ft at the center.
1
Expert's answer
2021-09-28T15:19:15-0400

1.

mass:

m=06(2x+3)dx=(x2+3x)06=54m=\int^6_0(2x+3)dx=(x^2+3x)|^6_0=54 kg

center of mass:

x=My/m\overline{x}=M_y/m

My=xρ(x)dx=06x(2x+3)dx=(2x3/3+3x2/2)06=198M_y=\int x\rho(x)dx=\int^6_0x(2x+3)dx=(2x^3/3+3x^2/2)|^6_0=198

x=198/54=3.67\overline{x}=198/54=3.67 m


2.

mass:

m=09(4x+1)dx=(2x2+x)09=171m=\int^9_0(4x+1)dx=(2x^2+x)|^9_0=171 slugs

center of mass:

x=My/m\overline{x}=M_y/m

My=xρ(x)dx=09x(4x+1)dx=(4x3/3+x2/2)09=1012.5M_y=\int x\rho(x)dx=\int^9_0x(4x+1)dx=(4x^3/3+x^2/2)|^9_0=1012.5

x=1012.5/171=5.92\overline{x}=1012.5/171=5.92 inches


3.

the linear density of the rod:

(3+x/12)(3+x/12) g/cm

mass:

m=012(3+x/12)dx=(x2/24+3x)012=42m=\int^{12}_0(3+x/12)dx=(x^2/24+3x)|^{12}_0=42 g

center of mass:

x=My/m\overline{x}=M_y/m

My=xρ(x)dx=012x(3+x/12)dx=(x3/36+3x2/2)012=264M_y=\int x\rho(x)dx=\int^{12}_0x(3+x/12)dx=(x^3/36+3x^2/2)|^{12}_0=264

x=264/42=6.29\overline{x}=264/42=6.29 cm


4.

the linear density of the rod:

34(10x)\frac{3}{4}(10-x) kg/m

mass:

m=0634(10x)dx=(15x/23x2/8)06=31.5m=\int^{6}_0\frac{3}{4}(10-x)dx=(15x/2-3x^2/8)|^{6}_0=31.5 kg

center of mass:

x=My/m\overline{x}=M_y/m

My=xρ(x)dx=0634x(10x)dx=(15x2/4x3/4)06=81M_y=\int x\rho(x)dx=\int^{6}_0\frac{3}{4}x(10-x)dx=(15x^2/4-x^3/4)|^{6}_0=81

x=81/31.5=2.57\overline{x}=81/31.5=2.57 m


5.

the linear density of the rod:

(x3/4)(x^3/4) slugs/ft

mass:

m=04(x3/4)dx=(x4/16)04=16m=\int^{4}_0(x^3/4)dx=(x^4/16)|^{4}_0=16 slugs

center of mass:

x=My/m\overline{x}=M_y/m

My=xρ(x)dx=04x(x3/4)dx=(x5/20)04=51.2M_y=\int x\rho(x)dx=\int^{4}_0x(x^3/4)dx=(x^5/20)|^{4}_0=51.2

x=51.2/16=3.20\overline{x}=51.2/16=3.20 ft


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS