Let 𝑓 be a function which is everywhere differentiable and for which 𝑓(2) = −3 and 𝑓 ′ (𝑥) = √𝑥 2 + 5. Given that 𝑔 is defined such that 𝑔(𝑥) = 𝑥 2𝑓 ( 𝑥 𝑥 − 1 ), show that 𝑔 ′ (2) = −24.
Given that f′(x)=x2+5f'(x)=\sqrt{x^2+5}f′(x)=x2+5
g(x)=x2(f(x)−1)g(x)=x^2(f(x)-1)g(x)=x2(f(x)−1)
Differentiating g(x)g(x)g(x) w.r.t .x,x,x, we get:
g′(x)=2x(f(x)−1)+x2(f′(x))g'(x)=2x(f(x)-1)+x^2(f'(x))g′(x)=2x(f(x)−1)+x2(f′(x))
Put x=2x=2x=2
g′(2)=4(f(2)−1)+22(f′(2))g'(2)=4(f(2)-1)+2^2(f'(2))g′(2)=4(f(2)−1)+22(f′(2))
=4((−3)−1)+4f′(2)=−16+4(3)=−4=4((-3)-1)+4f'(2)\\ =-16+4(3)\\ =-4=4((−3)−1)+4f′(2)=−16+4(3)=−4
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments