Differentiate the following functions (i) If π¦ = π β3π‘ sin 4π‘, prove that π 2π¦ ππ₯ 2 + 6 ππ¦ ππ₯ + 2π¦ = 0. (ii) Given that sin(π₯ 2 + π¦) = π¦ 2 (3π₯ + 1), show that ππ¦ ππ₯ = 2π₯ cos(π₯ 2 + π¦) β 3π¦ 2 2π¦(3π₯ + 1) β cos(π₯ 2 + π¦
(i) First, we know that "\ud835\udc66 = \ud835\udc52^{\u22123\ud835\udc61} \\sin{(4\ud835\udc61)}", then we proceed to derive
"\\\\ \\frac{dy}{dt}=\\frac{d}{dt}(\ud835\udc52^{\u22123\ud835\udc61}\\sin{(4\ud835\udc61)})\n\\\\ \\frac{dy}{dt}=\\sin{(4\ud835\udc61)}\\frac{d(\ud835\udc52^{\u22123\ud835\udc61} )}{dx}+\ud835\udc52 ^{\u22123\ud835\udc61} \\frac{d(\\sin{(4\ud835\udc61)})}{dx}\n\\\\ \\frac{dy}{dt}=\\sin{(4\ud835\udc61)}(-3\ud835\udc52^{\u22123\ud835\udc61})+\ud835\udc52^{\u22123\ud835\udc61}(4\\cos{(4t)})\n\\\\ \\frac{dy}{dt}=-3\ud835\udc52^{\u22123\ud835\udc61}\\sin{(4\ud835\udc61)}+4\ud835\udc52^{\u22123\ud835\udc61}\\cos{(4t)}\n\\\\ \\frac{dy}{dt}=\ud835\udc52^{\u22123\ud835\udc61} \\Big[ 4\\cos{(4t)} -3\\sin{(4\ud835\udc61)} \\Big]"
After the first derivative we can work on the second one:
"\\frac{d^2y}{dt^2}=\\frac{d}{dt}\\Big(\ud835\udc52^{\u22123\ud835\udc61} [ 4\\cos{(4t)} -3\\sin{(4\ud835\udc61)} ] \\Big)\n\\\\ \\frac{d^2y}{dt^2}=\ud835\udc52^{\u22123\ud835\udc61} \\frac{d}{dt}\\Big( 4\\cos{(4t)} -3\\sin{(4\ud835\udc61)} \\Big)+ ( 4\\cos{(4t)} -3\\sin{(4\ud835\udc61)} ) \\frac{d}{dt}\\Big( \ud835\udc52^{\u22123\ud835\udc61}\\Big)\n\\\\ \\frac{d^2y}{dt^2}=\ud835\udc52^{\u22123\ud835\udc61} \\big( -16\\sin{(4t)} -12\\cos{(4\ud835\udc61)} \\big)+ ( 4\\cos{(4t)} -3\\sin{(4\ud835\udc61)} )\\big(-3\ud835\udc52^{\u22123\ud835\udc61}\\big)\n\\\\ \\frac{d^2y}{dt^2}=\ud835\udc52^{\u22123\ud835\udc61} \\big( -16\\sin{(4t)} -12\\cos{(4\ud835\udc61)} -12\\cos{(4t)} +9\\sin{(4\ud835\udc61)} \\big)\n\\\\ \\frac{d^2y}{dt^2}=\ud835\udc52^{\u22123\ud835\udc61} \\big( -7\\sin{(4t)} -24\\cos{(4\ud835\udc61)}\\big)"
Now we have
"\ud835\udc66 = \ud835\udc52^{\u22123\ud835\udc61} \\sin{(4\ud835\udc61)}\n\\\\ \\frac{dy}{dt}=\ud835\udc52^{\u22123\ud835\udc61} \\Big[ 4\\cos{(4t)} -3\\sin{(4\ud835\udc61)} \\Big]\n\\\\ \\frac{d^2y}{dt^2}=-\ud835\udc52^{\u22123\ud835\udc61} \\big( 7\\sin{(4t)} +24\\cos{(4\ud835\udc61)}\\big)"
And we can substitute this on the DE, "\\frac{d^2y}{dt^2}+6\\frac{dy}{dt}+2y=0", to find if this is true for y:
"\\\\ \ud835\udc52^{\u22123\ud835\udc61} \\big( -7\\sin{(4t)} -24\\cos{(4\ud835\udc61)}\\big)+6\\Big(\ud835\udc52^{\u22123\ud835\udc61} \\big[ 4\\cos{(4t)} -3\\sin{(4\ud835\udc61)} \\big]\\Big)+2 \ud835\udc52^{\u22123\ud835\udc61} \\sin{(4\ud835\udc61)}=0\n\\\\ \ud835\udc52^{\u22123\ud835\udc61} \\Bigg( -7\\sin{(4t)} -24\\cos{(4\ud835\udc61)}+ 24\\cos{(4t)} -18\\sin{(4\ud835\udc61)} +2\\sin{(4\ud835\udc61)} \\Bigg)=0"
"\\\\ \\implies -\ud835\udc52^{\u22123\ud835\udc61} \\Bigg( 23\\sin{(4\ud835\udc61)} \\Bigg) \\neq 0"
(ii) Now we have two expressions, A and B:
"\\sin(x^2 + \ud835\udc66) = y^2(3x+ 1)\n\\\\ \\implies A=B"
We proceed to differentiate both terms and we have to use implicit differentiation:
"A'=\\cos(x^2 + y)(2x +\\frac{dy}{dx})\n\\\\ A'=2x\\cos(x^2 + y) +\\frac{dy}{dx}(\\cos(x^2 + y))"
"B'= 3y^2+2y(3x+ 1)\\frac{dy}{dx}\n\\\\ B'= 3y^2+2y(3x+ 1)\\frac{dy}{dx}"
Now we substitute to find "\\frac{dy}{dx}" :
"A'=B'\n\\\\2x\\cos(x^2 + y) -3y^2= (2y(3x+ 1)-\\cos(x^2 + y))\\frac{dy}{dx}\n\\\\ \\text{ }\n\\\\ \\implies \\cfrac{dy}{dx} = \\cfrac{2x\\cos(x^2 + y) -3y^2}{ 2y(3x+ 1)-\\cos(x^2 + y)}"
Comments
Leave a comment