Answer to Question #242756 in Calculus for JaytheCreator

Question #242756

Differentiate the following functions (i) If 𝑦 = 𝑒 −3𝑡 sin 4𝑡, prove that 𝑑 2𝑦 𝑑𝑥 2 + 6 𝑑𝑦 𝑑𝑥 + 2𝑦 = 0. (ii) Given that sin(𝑥 2 + 𝑦) = 𝑦 2 (3𝑥 + 1), show that 𝑑𝑦 𝑑𝑥 = 2𝑥 cos(𝑥 2 + 𝑦) − 3𝑦 2 2𝑦(3𝑥 + 1) − cos(𝑥 2 + 𝑦


1
Expert's answer
2021-09-27T23:26:07-0400

(i) First, we know that 𝑦=𝑒3𝑡sin(4𝑡)𝑦 = 𝑒^{−3𝑡} \sin{(4𝑡)}, then we proceed to derive


dydt=ddt(𝑒3𝑡sin(4𝑡))dydt=sin(4𝑡)d(𝑒3𝑡)dx+𝑒3𝑡d(sin(4𝑡))dxdydt=sin(4𝑡)(3𝑒3𝑡)+𝑒3𝑡(4cos(4t))dydt=3𝑒3𝑡sin(4𝑡)+4𝑒3𝑡cos(4t)dydt=𝑒3𝑡[4cos(4t)3sin(4𝑡)]\\ \frac{dy}{dt}=\frac{d}{dt}(𝑒^{−3𝑡}\sin{(4𝑡)}) \\ \frac{dy}{dt}=\sin{(4𝑡)}\frac{d(𝑒^{−3𝑡} )}{dx}+𝑒 ^{−3𝑡} \frac{d(\sin{(4𝑡)})}{dx} \\ \frac{dy}{dt}=\sin{(4𝑡)}(-3𝑒^{−3𝑡})+𝑒^{−3𝑡}(4\cos{(4t)}) \\ \frac{dy}{dt}=-3𝑒^{−3𝑡}\sin{(4𝑡)}+4𝑒^{−3𝑡}\cos{(4t)} \\ \frac{dy}{dt}=𝑒^{−3𝑡} \Big[ 4\cos{(4t)} -3\sin{(4𝑡)} \Big]


After the first derivative we can work on the second one:


d2ydt2=ddt(𝑒3𝑡[4cos(4t)3sin(4𝑡)])d2ydt2=𝑒3𝑡ddt(4cos(4t)3sin(4𝑡))+(4cos(4t)3sin(4𝑡))ddt(𝑒3𝑡)d2ydt2=𝑒3𝑡(16sin(4t)12cos(4𝑡))+(4cos(4t)3sin(4𝑡))(3𝑒3𝑡)d2ydt2=𝑒3𝑡(16sin(4t)12cos(4𝑡)12cos(4t)+9sin(4𝑡))d2ydt2=𝑒3𝑡(7sin(4t)24cos(4𝑡))\frac{d^2y}{dt^2}=\frac{d}{dt}\Big(𝑒^{−3𝑡} [ 4\cos{(4t)} -3\sin{(4𝑡)} ] \Big) \\ \frac{d^2y}{dt^2}=𝑒^{−3𝑡} \frac{d}{dt}\Big( 4\cos{(4t)} -3\sin{(4𝑡)} \Big)+ ( 4\cos{(4t)} -3\sin{(4𝑡)} ) \frac{d}{dt}\Big( 𝑒^{−3𝑡}\Big) \\ \frac{d^2y}{dt^2}=𝑒^{−3𝑡} \big( -16\sin{(4t)} -12\cos{(4𝑡)} \big)+ ( 4\cos{(4t)} -3\sin{(4𝑡)} )\big(-3𝑒^{−3𝑡}\big) \\ \frac{d^2y}{dt^2}=𝑒^{−3𝑡} \big( -16\sin{(4t)} -12\cos{(4𝑡)} -12\cos{(4t)} +9\sin{(4𝑡)} \big) \\ \frac{d^2y}{dt^2}=𝑒^{−3𝑡} \big( -7\sin{(4t)} -24\cos{(4𝑡)}\big)


Now we have


𝑦=𝑒3𝑡sin(4𝑡)dydt=𝑒3𝑡[4cos(4t)3sin(4𝑡)]d2ydt2=𝑒3𝑡(7sin(4t)+24cos(4𝑡))𝑦 = 𝑒^{−3𝑡} \sin{(4𝑡)} \\ \frac{dy}{dt}=𝑒^{−3𝑡} \Big[ 4\cos{(4t)} -3\sin{(4𝑡)} \Big] \\ \frac{d^2y}{dt^2}=-𝑒^{−3𝑡} \big( 7\sin{(4t)} +24\cos{(4𝑡)}\big)


And we can substitute this on the DE, d2ydt2+6dydt+2y=0\frac{d^2y}{dt^2}+6\frac{dy}{dt}+2y=0, to find if this is true for y:


𝑒3𝑡(7sin(4t)24cos(4𝑡))+6(𝑒3𝑡[4cos(4t)3sin(4𝑡)])+2𝑒3𝑡sin(4𝑡)=0𝑒3𝑡(7sin(4t)24cos(4𝑡)+24cos(4t)18sin(4𝑡)+2sin(4𝑡))=0\\ 𝑒^{−3𝑡} \big( -7\sin{(4t)} -24\cos{(4𝑡)}\big)+6\Big(𝑒^{−3𝑡} \big[ 4\cos{(4t)} -3\sin{(4𝑡)} \big]\Big)+2 𝑒^{−3𝑡} \sin{(4𝑡)}=0 \\ 𝑒^{−3𝑡} \Bigg( -7\sin{(4t)} -24\cos{(4𝑡)}+ 24\cos{(4t)} -18\sin{(4𝑡)} +2\sin{(4𝑡)} \Bigg)=0


    𝑒3𝑡(23sin(4𝑡))0\\ \implies -𝑒^{−3𝑡} \Bigg( 23\sin{(4𝑡)} \Bigg) \neq 0


That implies that 𝑦=𝑒3𝑡sin(4𝑡)𝑦 = 𝑒^{−3𝑡} \sin{(4𝑡)} is not a solution for the DE d2ydt2+6dydt+2y=0\frac{d^2y}{dt^2}+6\frac{dy}{dt}+2y=0.


(ii) Now we have two expressions, A and B:


sin(x2+𝑦)=y2(3x+1)    A=B\sin(x^2 + 𝑦) = y^2(3x+ 1) \\ \implies A=B


We proceed to differentiate both terms and we have to use implicit differentiation:


A=cos(x2+y)(2x+dydx)A=2xcos(x2+y)+dydx(cos(x2+y))A'=\cos(x^2 + y)(2x +\frac{dy}{dx}) \\ A'=2x\cos(x^2 + y) +\frac{dy}{dx}(\cos(x^2 + y))


B=3y2+2y(3x+1)dydxB=3y2+2y(3x+1)dydxB'= 3y^2+2y(3x+ 1)\frac{dy}{dx} \\ B'= 3y^2+2y(3x+ 1)\frac{dy}{dx}


Now we substitute to find dydx\frac{dy}{dx} :


A=B2xcos(x2+y)3y2=(2y(3x+1)cos(x2+y))dydx     dydx=2xcos(x2+y)3y22y(3x+1)cos(x2+y)A'=B' \\2x\cos(x^2 + y) -3y^2= (2y(3x+ 1)-\cos(x^2 + y))\frac{dy}{dx} \\ \text{ } \\ \implies \cfrac{dy}{dx} = \cfrac{2x\cos(x^2 + y) -3y^2}{ 2y(3x+ 1)-\cos(x^2 + y)}


That last result is consistent with the expected expression.




Reference:

  • Thomas, G. B., & Finney, R. L. (1961). Calculus. Addison-Wesley Publishing Company.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment