(i) First, we know that y=e−3tsin(4t), then we proceed to derive
dtdy=dtd(e−3tsin(4t))dtdy=sin(4t)dxd(e−3t)+e−3tdxd(sin(4t))dtdy=sin(4t)(−3e−3t)+e−3t(4cos(4t))dtdy=−3e−3tsin(4t)+4e−3tcos(4t)dtdy=e−3t[4cos(4t)−3sin(4t)]
After the first derivative we can work on the second one:
dt2d2y=dtd(e−3t[4cos(4t)−3sin(4t)])dt2d2y=e−3tdtd(4cos(4t)−3sin(4t))+(4cos(4t)−3sin(4t))dtd(e−3t)dt2d2y=e−3t(−16sin(4t)−12cos(4t))+(4cos(4t)−3sin(4t))(−3e−3t)dt2d2y=e−3t(−16sin(4t)−12cos(4t)−12cos(4t)+9sin(4t))dt2d2y=e−3t(−7sin(4t)−24cos(4t))
Now we have
y=e−3tsin(4t)dtdy=e−3t[4cos(4t)−3sin(4t)]dt2d2y=−e−3t(7sin(4t)+24cos(4t))
And we can substitute this on the DE, dt2d2y+6dtdy+2y=0, to find if this is true for y:
e−3t(−7sin(4t)−24cos(4t))+6(e−3t[4cos(4t)−3sin(4t)])+2e−3tsin(4t)=0e−3t(−7sin(4t)−24cos(4t)+24cos(4t)−18sin(4t)+2sin(4t))=0
⟹−e−3t(23sin(4t))=0
(ii) Now we have two expressions, A and B:
sin(x2+y)=y2(3x+1)⟹A=B
We proceed to differentiate both terms and we have to use implicit differentiation:
A′=cos(x2+y)(2x+dxdy)A′=2xcos(x2+y)+dxdy(cos(x2+y))
B′=3y2+2y(3x+1)dxdyB′=3y2+2y(3x+1)dxdy
Now we substitute to find dxdy :
A′=B′2xcos(x2+y)−3y2=(2y(3x+1)−cos(x2+y))dxdy ⟹dxdy=2y(3x+1)−cos(x2+y)2xcos(x2+y)−3y2
- Thomas, G. B., & Finney, R. L. (1961). Calculus. Addison-Wesley Publishing Company.
Comments
Leave a comment