Differentiate the following functions (i) π(π₯) = π₯π π₯ ππ ππ₯, (ii) β(π₯) = ln(π₯ + βπ₯ 2 β 1), (iii) π¦ = cos(π βπ‘ππ 3π₯ ), (iv) β1 + sin3(π₯π¦ 2) = π¦, (v) π¦(π₯) = (logπ π₯) π₯ tan(π π₯ ), (vi) π(π₯) = sinβ1 (β1 β 9π₯ 2).Β
i)
"f(x)=xe^xcscx"
"f'(x)=e^x(cscx-xcosx\/sin^2x)+xe^xcscx"
ii)
"h(x)=ln(x+\\sqrt{x^2-1})"
"h'(x)=\\frac{1+x\/\\sqrt{x^2-1}}{x+\\sqrt{x^2-1}}"
iii)
"y=cos(e^{\\sqrt{tan(3x)}})"
"y'=-3sin(e^{\\sqrt{tan(3x)}})sec^2(3x)e^{\\sqrt{tan(3x)}}\/(2\\sqrt{tan(3x)})"
iv)
"y=\\sqrt{1+sin^3(xy^2)}"
"y'=\\frac{3sin^2(xy^2)cos(xy^2)(y^2+2xyy')}{2\\sqrt{1+sin^3(xy^2)}}"
"y'=\\frac{3sin^2(xy^2)cos(xy^2)y^2}{2\\sqrt{1+sin^3(xy^2)}}\/(1-\\frac{3sin^2(xy^2)cos(xy^2)(y^2+2xy)}{2\\sqrt{1+sin^3(xy^2)}})"
v)
"y(x)=xlog_extan(e^x)=xlnxtan(e^x)"
"y'(x)=tan(e^x)(1+lnx)+xe^xlnxsec^2(e^x)"
vi)
"m(x)=sin^{-1}(\\sqrt{1-9x^2})"
"m'(x)=-\\frac{18x}{6x\\sqrt{1-9x^2}}=-\\frac{3}{\\sqrt{1-9x^2}}"
Comments
Leave a comment