Answer to Question #242755 in Calculus for JaytheCreator

Question #242755

Differentiate the following functions (i) 𝑓(𝑥) = 𝑥𝑒 𝑥 𝑐𝑠𝑐𝑥, (ii) ℎ(𝑥) = ln(𝑥 + √𝑥 2 − 1), (iii) 𝑦 = cos(𝑒 √𝑡𝑎𝑛 3𝑥 ), (iv) √1 + sin3(𝑥𝑦 2) = 𝑦, (v) 𝑦(𝑥) = (log𝑒 𝑥) 𝑥 tan(𝑒 𝑥 ), (vi) 𝑚(𝑥) = sin−1 (√1 − 9𝑥 2). 


1
Expert's answer
2021-09-28T00:11:43-0400

i)

f(x)=xexcscxf(x)=xe^xcscx

f(x)=ex(cscxxcosx/sin2x)+xexcscxf'(x)=e^x(cscx-xcosx/sin^2x)+xe^xcscx


ii)

h(x)=ln(x+x21)h(x)=ln(x+\sqrt{x^2-1})


h(x)=1+x/x21x+x21h'(x)=\frac{1+x/\sqrt{x^2-1}}{x+\sqrt{x^2-1}}


iii)

y=cos(etan(3x))y=cos(e^{\sqrt{tan(3x)}})


y=3sin(etan(3x))sec2(3x)etan(3x)/(2tan(3x))y'=-3sin(e^{\sqrt{tan(3x)}})sec^2(3x)e^{\sqrt{tan(3x)}}/(2\sqrt{tan(3x)})


iv)

y=1+sin3(xy2)y=\sqrt{1+sin^3(xy^2)}


y=3sin2(xy2)cos(xy2)(y2+2xyy)21+sin3(xy2)y'=\frac{3sin^2(xy^2)cos(xy^2)(y^2+2xyy')}{2\sqrt{1+sin^3(xy^2)}}


y=3sin2(xy2)cos(xy2)y221+sin3(xy2)/(13sin2(xy2)cos(xy2)(y2+2xy)21+sin3(xy2))y'=\frac{3sin^2(xy^2)cos(xy^2)y^2}{2\sqrt{1+sin^3(xy^2)}}/(1-\frac{3sin^2(xy^2)cos(xy^2)(y^2+2xy)}{2\sqrt{1+sin^3(xy^2)}})


v)

y(x)=xlogextan(ex)=xlnxtan(ex)y(x)=xlog_extan(e^x)=xlnxtan(e^x)

y(x)=tan(ex)(1+lnx)+xexlnxsec2(ex)y'(x)=tan(e^x)(1+lnx)+xe^xlnxsec^2(e^x)


vi)

m(x)=sin1(19x2)m(x)=sin^{-1}(\sqrt{1-9x^2})


m(x)=18x6x19x2=319x2m'(x)=-\frac{18x}{6x\sqrt{1-9x^2}}=-\frac{3}{\sqrt{1-9x^2}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment