i)
f(x)=xexcscx
f′(x)=ex(cscx−xcosx/sin2x)+xexcscx
ii)
h(x)=ln(x+x2−1)
h′(x)=x+x2−11+x/x2−1
iii)
y=cos(etan(3x))
y′=−3sin(etan(3x))sec2(3x)etan(3x)/(2tan(3x))
iv)
y=1+sin3(xy2)
y′=21+sin3(xy2)3sin2(xy2)cos(xy2)(y2+2xyy′)
y′=21+sin3(xy2)3sin2(xy2)cos(xy2)y2/(1−21+sin3(xy2)3sin2(xy2)cos(xy2)(y2+2xy))
v)
y(x)=xlogextan(ex)=xlnxtan(ex)
y′(x)=tan(ex)(1+lnx)+xexlnxsec2(ex)
vi)
m(x)=sin−1(1−9x2)
m′(x)=−6x1−9x218x=−1−9x23
Comments
Leave a comment