Use an appropriate local linear approximation to estimate 3√9
The linear approximation to "f(x)=\\sqrt[3]{x}" at "x_{0}=9" .
A linear approximation is given by "L(x) \\approx f\\left(x_{0}\\right)+f^{\\prime}\\left(x_{0}\\right)\\left(x-x_{0}\\right) ."
We are given that "x_{0}=9" .
Firstly, find the value of the function at the given point: "y_{0}=f\\left(x_{0}\\right)=3^{\\frac{2}{3}}" .
Secondly, find the derivative of the function, evaluated at the point: "f^{\\prime}(9)" .
Find the derivative: "f^{\\prime}(x)=\\frac{1}{3 x^{\\frac{2}{3}}}"
Next, evaluate the derivative at the given point to find slope.
"f^{\\prime}(9)=\\frac{3^{\\frac{2}{3}}}{27}"
Plugging the values found, we get that "L(x) \\approx 3^{\\frac{2}{3}}+\\frac{3^{\\frac{2}{3}}}{27}(x-(9))" .
Or, more simply: "L(x) \\approx \\frac{3^{\\frac{2}{3}}}{27} x+\\frac{2 \\cdot 3^{\\frac{2}{3}}}{3}" .
Answer: "L(x) \\approx \\frac{3^{\\frac{2}{3}}}{27} x+\\frac{2 \\cdot 3^{\\frac{2}{3}}}{3} \\approx 0.077040141594515 x+1.38672254870127" .
Comments
Leave a comment