Question #242719

Use an appropriate local linear approximation to estimate 3√9


1
Expert's answer
2021-09-27T18:17:43-0400

The linear approximation to f(x)=x3f(x)=\sqrt[3]{x}  at  x0=9x_{0}=9 .

A linear approximation is given by  L(x)f(x0)+f(x0)(xx0).L(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) .

We are given that  x0=9x_{0}=9 .

Firstly, find the value of the function at the given point:  y0=f(x0)=323y_{0}=f\left(x_{0}\right)=3^{\frac{2}{3}} .

Secondly, find the derivative of the function, evaluated at the point:  f(9)f^{\prime}(9) .

Find the derivative:  f(x)=13x23f^{\prime}(x)=\frac{1}{3 x^{\frac{2}{3}}}  

Next, evaluate the derivative at the given point to find slope.

 

f(9)=32327f^{\prime}(9)=\frac{3^{\frac{2}{3}}}{27}  

Plugging the values found, we get that  L(x)323+32327(x(9))L(x) \approx 3^{\frac{2}{3}}+\frac{3^{\frac{2}{3}}}{27}(x-(9)) .

Or, more simply: L(x)32327x+23233L(x) \approx \frac{3^{\frac{2}{3}}}{27} x+\frac{2 \cdot 3^{\frac{2}{3}}}{3} .

Answer:  L(x)32327x+232330.077040141594515x+1.38672254870127L(x) \approx \frac{3^{\frac{2}{3}}}{27} x+\frac{2 \cdot 3^{\frac{2}{3}}}{3} \approx 0.077040141594515 x+1.38672254870127 .   


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS