Question #242413

Find each of the following derivatives. Simplify all answers completely. Show all work toward your answer or provide an explanation for how you arrived at your answer.


1) f(x)=sqroot e^2x + 8x^2 e^x


2) g(x)= xsin(x)/1+cos(x)


3) h(x)=e^-x sin(x)


4) y=sec(x)tan(x)


5) f(t)= ((t-1)(2t^2 -1))/(t^3 -1)



1
Expert's answer
2021-09-27T16:41:04-0400

1)

f(x)=(e2x+8x2ex)=(e2x+8x2ex)2e2x+8x2exf'(x)=(\sqrt{e^{2x} + 8x^2 e^x})'=\dfrac{(e^{2x} + 8x^2 e^x)'}{2\sqrt{e^{2x} + 8x^2 e^x}}

=2e2x+16xex+8x2ex2e2x+8x2ex=\dfrac{2e^{2x}+16xe^x+8x^2e^x}{2\sqrt{e^{2x} + 8x^2 e^x}}

=e2x+8xex+4x2exe2x+8x2ex=\dfrac{e^{2x}+8xe^x+4x^2e^x}{\sqrt{e^{2x} + 8x^2 e^x}}

=ex(ex+8x+4x2)e2x+8x2ex=\dfrac{e^x(e^{x}+8x+4x^2)}{\sqrt{e^{2x} + 8x^2 e^x}}


2)

g(x)=(xsin(x)1+cos(x))=(x(2sin(x/2)cos(x/2))2cos2(x/2))g'(x)=(\dfrac{x\sin(x)}{1+\cos(x)})'=(\dfrac{x(2\sin(x/2)\cos(x/2))}{2\cos^2(x/2)})'

=(xtan(x/2))=tan(x/2)+x2cos2(x/2)=(x\tan(x/2))'=\tan(x/2)+\dfrac{x}{2\cos^2(x/2)}

=2sin(x/2)cos(x/2)+x2cos2(x/2)=sin(x)+x1+cos(x)=\dfrac{2\sin(x/2)\cos(x/2)+x}{2\cos^2(x/2)}=\dfrac{\sin(x)+x}{1+\cos(x)}


3)

h(x)=(exsin(x))=exsin(x)+excos(x)h'(x)=(e^{-x}\sin(x))'=-e^{-x}\sin(x)+e^{-x}\cos(x)


4)

y=(sec(x)tan(x))=(sin(x)cos2(x))y'=(\sec(x)\tan(x))'=(\dfrac{\sin(x)}{\cos^2(x)})'

=cos3(x)2cos(x)(sin(x))sin(x)cos4(x)=\dfrac{\cos^3(x)-2\cos(x)(-\sin(x))\sin(x)}{\cos^4(x)}

=cos2(x)+2sin2(x)cos3(x)=1+sin2(x)cos3(x)=\dfrac{\cos^2(x)+2\sin^2(x)}{\cos^3(x)}=\dfrac{1+\sin^2(x)}{\cos^3(x)}

=sec3(x)+sec(x)tan2(x)=\sec^3(x)+\sec(x)\tan^2(x)



5)

f(t)=((t1)(2t21)t31)=((t1)(2t21)(t1)(t2+t+1))f'(t)=(\dfrac{(t-1)(2t^2-1)}{t^3-1})'=(\dfrac{(t-1)(2t^2-1)}{(t-1)(t^2+t+1)})'

=(2t21t2+t+1)=4t(t2+t+1)(2t+1)(2t21)(t2+t+1)2=(\dfrac{2t^2-1}{t^2+t+1})'=\dfrac{4t(t^2+t+1)-(2t+1)(2t^2-1)}{(t^2+t+1)^2}

=4t3+4t2+4t4t3+2t2t2+1(t2+t+1)2=\dfrac{4t^3+4t^2+4t-4t^3+2t-2t^2+1}{(t^2+t+1)^2}

=2t2+6t+1(t2+t+1)2=\dfrac{2t^2+6t+1}{(t^2+t+1)^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS