Find each of the following derivatives. Simplify all answers completely. Show all work toward your answer or provide an explanation for how you arrived at your answer.
1) f(x)=sqroot e^2x + 8x^2 e^x
2) g(x)= xsin(x)/1+cos(x)
3) h(x)=e^-x sin(x)
4) y=sec(x)tan(x)
5) f(t)= ((t-1)(2t^2 -1))/(t^3 -1)
1)
"f'(x)=(\\sqrt{e^{2x} + 8x^2 e^x})'=\\dfrac{(e^{2x} + 8x^2 e^x)'}{2\\sqrt{e^{2x} + 8x^2 e^x}}""=\\dfrac{2e^{2x}+16xe^x+8x^2e^x}{2\\sqrt{e^{2x} + 8x^2 e^x}}"
"=\\dfrac{e^{2x}+8xe^x+4x^2e^x}{\\sqrt{e^{2x} + 8x^2 e^x}}"
"=\\dfrac{e^x(e^{x}+8x+4x^2)}{\\sqrt{e^{2x} + 8x^2 e^x}}"
2)
"g'(x)=(\\dfrac{x\\sin(x)}{1+\\cos(x)})'=(\\dfrac{x(2\\sin(x\/2)\\cos(x\/2))}{2\\cos^2(x\/2)})'""=(x\\tan(x\/2))'=\\tan(x\/2)+\\dfrac{x}{2\\cos^2(x\/2)}"
"=\\dfrac{2\\sin(x\/2)\\cos(x\/2)+x}{2\\cos^2(x\/2)}=\\dfrac{\\sin(x)+x}{1+\\cos(x)}"
3)
"h'(x)=(e^{-x}\\sin(x))'=-e^{-x}\\sin(x)+e^{-x}\\cos(x)"
4)
"y'=(\\sec(x)\\tan(x))'=(\\dfrac{\\sin(x)}{\\cos^2(x)})'""=\\dfrac{\\cos^3(x)-2\\cos(x)(-\\sin(x))\\sin(x)}{\\cos^4(x)}"
"=\\dfrac{\\cos^2(x)+2\\sin^2(x)}{\\cos^3(x)}=\\dfrac{1+\\sin^2(x)}{\\cos^3(x)}"
"=\\sec^3(x)+\\sec(x)\\tan^2(x)"
5)
"f'(t)=(\\dfrac{(t-1)(2t^2-1)}{t^3-1})'=(\\dfrac{(t-1)(2t^2-1)}{(t-1)(t^2+t+1)})'""=(\\dfrac{2t^2-1}{t^2+t+1})'=\\dfrac{4t(t^2+t+1)-(2t+1)(2t^2-1)}{(t^2+t+1)^2}"
"=\\dfrac{4t^3+4t^2+4t-4t^3+2t-2t^2+1}{(t^2+t+1)^2}"
"=\\dfrac{2t^2+6t+1}{(t^2+t+1)^2}"
Comments
Leave a comment