The maclaurin’s series is given byf(z)=f(0)+zf′(0)+2z2f′′(0)+6z3f′′′(0)+24z4fiv(0)+120z5fv(0)+⋯Wheref(0)=sin0=0f′(z)=cosz,f′(0)=1f′′(z)=−sinz,f′′(0)=0f′′′(z)=−cosz,f′′′(0)=−1fiv(z)=sinz,fiv(0)=0fv(z)=cosz,fv(0)=1Hence, the maclaurin’s series is given byf(z)=z−6z3+120z5+⋯
Comments