Question #242434

Show that the MacLaurin's series for f (z) =sin z is given by

z z 3 s "' (- I)" z211+J

f(z) =z--+- ....+L ( ) +...


1
Expert's answer
2021-09-27T15:01:59-0400

The maclaurin’s series is given byf(z)=f(0)+zf(0)+z22f(0)+z36f(0)+z424fiv(0)+z5120fv(0)+Wheref(0)=sin0=0f(z)=cosz,f(0)=1f(z)=sinz,f(0)=0f(z)=cosz,f(0)=1fiv(z)=sinz,fiv(0)=0fv(z)=cosz,fv(0)=1Hence, the maclaurin’s series is given byf(z)=zz36+z5120+\displaystyle \text{The maclaurin's series is given by}\\ f(z) = f(0) + zf'(0) + \frac{z^2}{2}f''(0) + \frac{z^3}{6}f'''(0)+\frac{z^4}{24}f^{iv}(0)+\frac{z^5}{120}f^{v}(0)+\cdots\\ \text{Where}\\ f(0) = sin0=0\\ f'(z) = cosz, \qquad f'(0) = 1\\ f''(z) = -sinz, \qquad f''(0) =0\\ f'''(z) = -cosz, \qquad f'''(0) =-1\\ f^{iv}(z) = sinz, \qquad f^{iv}(0) =0\\ f^{v}(z) = cosz, \qquad f^{v}(0) =1\\ \text{Hence, the maclaurin's series is given by}\\ f(z) = z-\frac{z^3}{6}+\frac{z^5}{120}+ \cdots


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS