Vertices:
(0,8),(2.6),(2,0)
Graphs:
(0,8),(2.6) :
8=b
6=2a+b⟹a=−1
y=8−x
(2.6),(2,0)
x=2
(0,8),(2,0)
b=8
0=2a+b⟹a=−4
y=8−4x
mass:
m=∬ρ(x,y)dA=∫x=0x=2∫y=8−4xy=8−x(x+y+1)dydx=
=∫x=0x=2(xy+y2/2+y)∣y=8−4xy=8−xdx=
=∫x=0x=2(x(8−x)+(8−x)2/2+8−x−x(8−4x)−(8−4x)2/2−8+4x)dx=
=∫x=0x=2(−4.5x2+27x)dx=(27x2/2−1.5x3)∣02=42
Mx=∬yρ(x.y)dA=∫x=0x=2∫y=8−4xy=8−xy(x+y+1)dydx=
=∫x=0x=2(y2x/2+y3/3+y2/2)∣y=8−4xy=8−xdx=
=∫x=0x=2(x(8−x)2/2+(8−x)3/3+(8−x)2/2−x(8−4x)2/2−(8−4x)3/3−
−(8−4x)2/2)dx=∫x=0x=2(32x−8x2+x3/2+512/3−64x+8x2−x3/3+
+32−8x+x2/2−32x+32x2−8x3−512/3+256x−128x2+64x3/3−
−32+32x−8x2)dx=∫x=0x=2(216x−103.5x2+13.5x3)dx=
=(108x2−34.5x3+3.375x4)∣02=210
My=∬xρ(x.y)dA=∫x=0x=2∫y=8−4xy=8−xx(x+y+1)dydx=
=∫x=0x=2(y2x/2+x2y+xy)∣y=8−4xy=8−xdx=
=∫x=0x=2((8−x)2x/2+x2(8−x)+x(8−x)−(8−4x)2x/2−
−x2(8−4x)−x(8−4x))dx=∫x=0x=2(32x−8x2+x3/2+8x2−x3+
+8x−x2−32x+32x2−8x3−8x2+32x3−8x+4x2)dx=
=(9x3+5.75x4)∣02=164
The center of mass:
x=mMy=42164=2182=3.90
y=mMx=42210=5.00
Comments