Question #243135
Find the center of mass of a triangular sheet whose vertices are (8, 0), (2, 6) and (2, 0), whose density function is

p (x, y) = x + y + 1







1
Expert's answer
2021-09-28T15:52:59-0400

Vertices:

(0,8),(2.6),(2,0)(0,8),(2.6),(2,0)


Graphs:

(0,8),(2.6)(0,8),(2.6) :

8=b8=b

6=2a+b    a=16=2a+b\implies a=-1

y=8xy=8-x


(2.6),(2,0)(2.6),(2,0)

x=2x=2


(0,8),(2,0)(0,8),(2,0)

b=8b=8

0=2a+b    a=40=2a+b\implies a=-4

y=84xy=8-4x



mass:

m=ρ(x,y)dA=x=0x=2y=84xy=8x(x+y+1)dydx=m=\iint \rho(x,y)dA=\int^{x=2}_{x=0}\int^{y=8-x}_{y=8-4x}(x+y+1)dydx=


=x=0x=2(xy+y2/2+y)y=84xy=8xdx==\int^{x=2}_{x=0}(xy+y^2/2+y)|^{y=8-x}_{y=8-4x}dx=


=x=0x=2(x(8x)+(8x)2/2+8xx(84x)(84x)2/28+4x)dx==\int^{x=2}_{x=0}(x(8-x)+(8-x)^2/2+8-x-x(8-4x)-(8-4x)^2/2-8+4x)dx=


=x=0x=2(4.5x2+27x)dx=(27x2/21.5x3)02=42=\int^{x=2}_{x=0}(-4.5x^2+27x)dx=(27x^2/2-1.5x^3)|^2_0=42


Mx=yρ(x.y)dA=x=0x=2y=84xy=8xy(x+y+1)dydx=M_x=\iint y\rho(x.y)dA=\int^{x=2}_{x=0}\int^{y=8-x}_{y=8-4x}y(x+y+1)dydx=


=x=0x=2(y2x/2+y3/3+y2/2)y=84xy=8xdx==\int^{x=2}_{x=0}(y^2x/2+y^3/3+y^2/2)|^{y=8-x}_{y=8-4x}dx=


=x=0x=2(x(8x)2/2+(8x)3/3+(8x)2/2x(84x)2/2(84x)3/3=\int^{x=2}_{x=0}(x(8-x)^2/2+(8-x)^3/3+(8-x)^2/2-x(8-4x)^2/2-(8-4x)^3/3-


(84x)2/2)dx=x=0x=2(32x8x2+x3/2+512/364x+8x2x3/3+-(8-4x)^2/2)dx=\int^{x=2}_{x=0}(32x-8x^2+x^3/2+512/3-64x+8x^2-x^3/3+


+328x+x2/232x+32x28x3512/3+256x128x2+64x3/3+32-8x+x^2/2-32x+32x^2-8x^3-512/3+256x-128x^2+64x^3/3-


32+32x8x2)dx=x=0x=2(216x103.5x2+13.5x3)dx=-32+32x-8x^2)dx=\int^{x=2}_{x=0}(216x-103.5x^2+13.5x^3)dx=


=(108x234.5x3+3.375x4)02=210=(108x^2-34.5x^3+3.375x^4)|^2_0=210


My=xρ(x.y)dA=x=0x=2y=84xy=8xx(x+y+1)dydx=M_y=\iint x\rho(x.y)dA=\int^{x=2}_{x=0}\int^{y=8-x}_{y=8-4x}x(x+y+1)dydx=


=x=0x=2(y2x/2+x2y+xy)y=84xy=8xdx==\int^{x=2}_{x=0}(y^2x/2+x^2y+xy)|^{y=8-x}_{y=8-4x}dx=


=x=0x=2((8x)2x/2+x2(8x)+x(8x)(84x)2x/2=\int^{x=2}_{x=0}((8-x)^2x/2+x^2(8-x)+x(8-x)-(8-4x)^2x/2-


x2(84x)x(84x))dx=x=0x=2(32x8x2+x3/2+8x2x3+-x^2(8-4x)-x(8-4x))dx=\int^{x=2}_{x=0}(32x-8x^2+x^3/2+8x^2-x^3+


+8xx232x+32x28x38x2+32x38x+4x2)dx=+8x-x^2-32x+32x^2-8x^3-8x^2+32x^3-8x+4x^2)dx=


=(9x3+5.75x4)02=164=(9x^3+5.75x^4)|^2_0=164


The center of mass:


x=Mym=16442=8221=3.90\overline{x}=\frac{M_y}{m}=\frac{164}{42}=\frac{82}{21}=3.90


y=Mxm=21042=5.00\overline{y}=\frac{M_x}{m}=\frac{210}{42}=5.00


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS