Find the center of mass of a triangular sheet whose vertices are (8, 0), (2, 6) and (2, 0), whose density function is
p (x, y) = x + y + 1
Vertices:
"(0,8),(2.6),(2,0)"
Graphs:
"(0,8),(2.6)" :
"8=b"
"6=2a+b\\implies a=-1"
"y=8-x"
"(2.6),(2,0)"
"x=2"
"(0,8),(2,0)"
"b=8"
"0=2a+b\\implies a=-4"
"y=8-4x"
mass:
"m=\\iint \\rho(x,y)dA=\\int^{x=2}_{x=0}\\int^{y=8-x}_{y=8-4x}(x+y+1)dydx="
"=\\int^{x=2}_{x=0}(xy+y^2\/2+y)|^{y=8-x}_{y=8-4x}dx="
"=\\int^{x=2}_{x=0}(x(8-x)+(8-x)^2\/2+8-x-x(8-4x)-(8-4x)^2\/2-8+4x)dx="
"=\\int^{x=2}_{x=0}(-4.5x^2+27x)dx=(27x^2\/2-1.5x^3)|^2_0=42"
"M_x=\\iint y\\rho(x.y)dA=\\int^{x=2}_{x=0}\\int^{y=8-x}_{y=8-4x}y(x+y+1)dydx="
"=\\int^{x=2}_{x=0}(y^2x\/2+y^3\/3+y^2\/2)|^{y=8-x}_{y=8-4x}dx="
"=\\int^{x=2}_{x=0}(x(8-x)^2\/2+(8-x)^3\/3+(8-x)^2\/2-x(8-4x)^2\/2-(8-4x)^3\/3-"
"-(8-4x)^2\/2)dx=\\int^{x=2}_{x=0}(32x-8x^2+x^3\/2+512\/3-64x+8x^2-x^3\/3+"
"+32-8x+x^2\/2-32x+32x^2-8x^3-512\/3+256x-128x^2+64x^3\/3-"
"-32+32x-8x^2)dx=\\int^{x=2}_{x=0}(216x-103.5x^2+13.5x^3)dx="
"=(108x^2-34.5x^3+3.375x^4)|^2_0=210"
"M_y=\\iint x\\rho(x.y)dA=\\int^{x=2}_{x=0}\\int^{y=8-x}_{y=8-4x}x(x+y+1)dydx="
"=\\int^{x=2}_{x=0}(y^2x\/2+x^2y+xy)|^{y=8-x}_{y=8-4x}dx="
"=\\int^{x=2}_{x=0}((8-x)^2x\/2+x^2(8-x)+x(8-x)-(8-4x)^2x\/2-"
"-x^2(8-4x)-x(8-4x))dx=\\int^{x=2}_{x=0}(32x-8x^2+x^3\/2+8x^2-x^3+"
"+8x-x^2-32x+32x^2-8x^3-8x^2+32x^3-8x+4x^2)dx="
"=(9x^3+5.75x^4)|^2_0=164"
The center of mass:
"\\overline{x}=\\frac{M_y}{m}=\\frac{164}{42}=\\frac{82}{21}=3.90"
"\\overline{y}=\\frac{M_x}{m}=\\frac{210}{42}=5.00"
Comments
Leave a comment