Integral sech √x tanh √x/√x dx
Let "I=\\int (\\frac{sech(\\sqrt{x}).tanh(\\sqrt{x})}{\\sqrt{x}}) dx\\\\"
Put "\\sqrt{x}=t"
"\\therefore \\frac{1}{2\\sqrt{x}}dx=dt\\\\\n\\Rightarrow \\frac{1}{\\sqrt{x}}dx=2.dt"
So, "I=2\\int (sech(t).tanh(t))dt\\\\"
"=2\\int (\\frac{2}{ e^t + e^{-t}})(\\frac{ e^t - e^{-t}}{ e^t + e^{-t}})dt\\\\\n=4\\int(\\frac{ e^t - e^{-t}}{ (e^t + e^{-t})^2})dt\\\\"
Put "(e^t + e^{-t})=u"
"\\therefore (e^t-e^{-t})dt=du\\\\"
So, "I=4\\int (\\frac{1}{u^2})du\\\\"
"=-\\frac{4}{u}+c" where "c" is the constant of integration.
"=-\\frac{4}{(e^t + e^{-t})}+c\\\\\n=-\\frac{4}{(e^{\\sqrt{x}} + e^{-\\sqrt{x}})}+c\\\\"
Comments
Leave a comment