Let I = ∫ ( s e c h ( x ) . t a n h ( x ) x ) d x I=\int (\frac{sech(\sqrt{x}).tanh(\sqrt{x})}{\sqrt{x}}) dx\\ I = ∫ ( x sec h ( x ) . t anh ( x ) ) d x
Put x = t \sqrt{x}=t x = t
∴ 1 2 x d x = d t ⇒ 1 x d x = 2. d t \therefore \frac{1}{2\sqrt{x}}dx=dt\\
\Rightarrow \frac{1}{\sqrt{x}}dx=2.dt ∴ 2 x 1 d x = d t ⇒ x 1 d x = 2. d t
So, I = 2 ∫ ( s e c h ( t ) . t a n h ( t ) ) d t I=2\int (sech(t).tanh(t))dt\\ I = 2 ∫ ( sec h ( t ) . t anh ( t )) d t
= 2 ∫ ( 2 e t + e − t ) ( e t − e − t e t + e − t ) d t = 4 ∫ ( e t − e − t ( e t + e − t ) 2 ) d t =2\int (\frac{2}{ e^t + e^{-t}})(\frac{ e^t - e^{-t}}{ e^t + e^{-t}})dt\\
=4\int(\frac{ e^t - e^{-t}}{ (e^t + e^{-t})^2})dt\\ = 2 ∫ ( e t + e − t 2 ) ( e t + e − t e t − e − t ) d t = 4 ∫ ( ( e t + e − t ) 2 e t − e − t ) d t
Put ( e t + e − t ) = u (e^t + e^{-t})=u ( e t + e − t ) = u
∴ ( e t − e − t ) d t = d u \therefore (e^t-e^{-t})dt=du\\ ∴ ( e t − e − t ) d t = d u
So, I = 4 ∫ ( 1 u 2 ) d u I=4\int (\frac{1}{u^2})du\\ I = 4 ∫ ( u 2 1 ) d u
= − 4 u + c =-\frac{4}{u}+c = − u 4 + c where c c c is the constant of integration.
= − 4 ( e t + e − t ) + c = − 4 ( e x + e − x ) + c =-\frac{4}{(e^t + e^{-t})}+c\\
=-\frac{4}{(e^{\sqrt{x}} + e^{-\sqrt{x}})}+c\\ = − ( e t + e − t ) 4 + c = − ( e x + e − x ) 4 + c
Comments