Find the inverse Laplace transform of the following (i) π (π +π) 2+π2, (ii) π 2β5 π 3+4π 2+3π β (iii) 3π (π +1) 4, (iv) 1 (π 2+1) 2.Β
(i)
"=L^{-1}\\{\\dfrac{s}{(s+a)^2+b^2}\\}=L^{-1}\\{\\dfrac{s+a-a}{(s+a)^2+b^2}\\}"
"=L^{-1}\\{\\dfrac{s+a}{(s+a)^2+b^2}\\}-L^{-1}\\{\\dfrac{a}{(s+a)^2+b^2}\\}"
"=e^{-at}\\cos(bt)-\\dfrac{a}{b}e^{-at}\\sin(bt)"
(ii)
"s^3+4s^2+3s=s(s^2+4s+3)=s(s+1)(s+3)"
"\\dfrac{s^2-5}{s^3+4s^2+3s}=\\dfrac{A}{s}+\\dfrac{B}{s+1}+\\dfrac{C}{s+3}"
"=\\dfrac{A(s+1)(s+3)+Bs(s+3)+Cs(s+1)}{s^3+4s^2+3s}"
"s=0: -5=3A=>A=-\\dfrac{5}{3}"
"s=-1: -4=-2B=>B=2"
"s=-3: 4=6C=>C=\\dfrac{2}{3}"
"f(t)=L^{-1}\\{\\dfrac{s^2-5}{s^3+4s^2+3s}\\}"
"=-\\dfrac{5}{3}L^{-1}\\{\\dfrac{1}{s}\\}+2L^{-1}\\{\\dfrac{1}{s+1}\\}+\\dfrac{2}{3}L^{-1}\\{\\dfrac{1}{s+3}\\}"
"=-\\dfrac{5}{3}+2e^{-t}+\\dfrac{2}{3}e^{-3t}"
(iii)
"=L^{-1}\\{\\dfrac{3s}{(s+1)^4}\\}=3L^{-1}\\{\\dfrac{s+1-1}{(s+1)^4}\\}"
"=3L^{-1}\\{\\dfrac{1}{(s+1)^3}\\}-3L^{-1}\\{\\dfrac{1}{(s+1)^4}\\}"
"=\\dfrac{3}{2}t^2e^{-t}-\\dfrac{1}{2}t^3e^{-at}"
(iv)
"=\\dfrac{1}{2(1)^3}(\\sin(1\\cdot t)-1\\cdot t\\cos(1\\cdot t))"
"=\\dfrac{1}{2}\\sin(t)-\\dfrac{1}{2}t\\cos(t)"
Comments
Leave a comment