Answer to Question #243672 in Calculus for JaytheCreator

Question #243672

Find the inverse Laplace transform of the following (i) 𝑠 (𝑠+𝑎) 2+𝑏2, (ii) 𝑠 2−5 𝑠 3+4𝑠 2+3𝑠 ’ (iii) 3𝑠 (𝑠+1) 4, (iv) 1 (𝑠 2+1) 2. 


1
Expert's answer
2021-09-29T08:59:44-0400

(i)


f(t)=L1{F(s)}f(t)=L^{-1}\{F(s)\}

=L1{s(s+a)2+b2}=L1{s+aa(s+a)2+b2}=L^{-1}\{\dfrac{s}{(s+a)^2+b^2}\}=L^{-1}\{\dfrac{s+a-a}{(s+a)^2+b^2}\}

=L1{s+a(s+a)2+b2}L1{a(s+a)2+b2}=L^{-1}\{\dfrac{s+a}{(s+a)^2+b^2}\}-L^{-1}\{\dfrac{a}{(s+a)^2+b^2}\}

=eatcos(bt)abeatsin(bt)=e^{-at}\cos(bt)-\dfrac{a}{b}e^{-at}\sin(bt)

(ii)


f(t)=L1{F(s)}=L1{s25s3+4s2+3s}f(t)=L^{-1}\{F(s)\}=L^{-1}\{\dfrac{s^2-5}{s^3+4s^2+3s}\}

s3+4s2+3s=s(s2+4s+3)=s(s+1)(s+3)s^3+4s^2+3s=s(s^2+4s+3)=s(s+1)(s+3)

s25s3+4s2+3s=As+Bs+1+Cs+3\dfrac{s^2-5}{s^3+4s^2+3s}=\dfrac{A}{s}+\dfrac{B}{s+1}+\dfrac{C}{s+3}

=A(s+1)(s+3)+Bs(s+3)+Cs(s+1)s3+4s2+3s=\dfrac{A(s+1)(s+3)+Bs(s+3)+Cs(s+1)}{s^3+4s^2+3s}

s=0:5=3A=>A=53s=0: -5=3A=>A=-\dfrac{5}{3}

s=1:4=2B=>B=2s=-1: -4=-2B=>B=2

s=3:4=6C=>C=23s=-3: 4=6C=>C=\dfrac{2}{3}

f(t)=L1{s25s3+4s2+3s}f(t)=L^{-1}\{\dfrac{s^2-5}{s^3+4s^2+3s}\}

=53L1{1s}+2L1{1s+1}+23L1{1s+3}=-\dfrac{5}{3}L^{-1}\{\dfrac{1}{s}\}+2L^{-1}\{\dfrac{1}{s+1}\}+\dfrac{2}{3}L^{-1}\{\dfrac{1}{s+3}\}

=53+2et+23e3t=-\dfrac{5}{3}+2e^{-t}+\dfrac{2}{3}e^{-3t}

(iii)


f(t)=L1{F(s)}f(t)=L^{-1}\{F(s)\}

=L1{3s(s+1)4}=3L1{s+11(s+1)4}=L^{-1}\{\dfrac{3s}{(s+1)^4}\}=3L^{-1}\{\dfrac{s+1-1}{(s+1)^4}\}

=3L1{1(s+1)3}3L1{1(s+1)4}=3L^{-1}\{\dfrac{1}{(s+1)^3}\}-3L^{-1}\{\dfrac{1}{(s+1)^4}\}

=32t2et12t3eat=\dfrac{3}{2}t^2e^{-t}-\dfrac{1}{2}t^3e^{-at}

(iv)


f(t)=L1{F(s)}=L1{1(s2+1)2}f(t)=L^{-1}\{F(s)\}=L^{-1}\{\dfrac{1}{(s^2+1)^2}\}

=12(1)3(sin(1t)1tcos(1t))=\dfrac{1}{2(1)^3}(\sin(1\cdot t)-1\cdot t\cos(1\cdot t))

=12sin(t)12tcos(t)=\dfrac{1}{2}\sin(t)-\dfrac{1}{2}t\cos(t)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment