With the use of Laplace transform, solve the following I.V.Ps (i) π¦ β²β² + 2π¦ β² + π¦ = π βπ‘ , π¦(0) = 1, π¦ β² (0) = 3, (ii) π¦ β²β² + π¦ = π‘ 2 sin π‘, π¦(0) = π¦ β² (0) = 0β (iii) π¦ β²β² + 3π¦ β² + 7π¦ = cos π‘, π¦(0) = 0, π¦ β² (0) = 2, (iv) π¦ β²β² + π¦ β² + π¦ = π‘ 3 , π¦(0) = 2, π¦ β² (0) = 0.
(i)
"s^2L(y)-sy(0)-y'(0)+2(sL(y)-y(0))+L(y)"
"=\\dfrac{1}{s+1}"
"s^2L(y)-s-3+2sL(y)-2+L(y)=\\dfrac{1}{s+1}"
"(s^2+2s+1)L(y)=\\dfrac{s^2+5s+s+5+1}{s+1}"
"L(y)=\\dfrac{s^2+6s+6}{(s+1)^3}"
"\\dfrac{s^2+6s+6}{(s+1)^3}=\\dfrac{s^2+2s+1+4s+4+1}{(s+1)^3}"
"=\\dfrac{1}{(s+1)}+\\dfrac{4}{(s+1)^2}+\\dfrac{1}{(s+1)^3}"
Taking the inverse transform then gives
(ii)
"s^2L(y)-sy(0)-y'(0)+L(y)=(-1)^2\\dfrac{d^2}{ds^2}(\\dfrac{1}{s^2+1})"
"\\dfrac{d}{ds}(\\dfrac{1}{s^2+1})=-\\dfrac{2s}{(s^2+1)^2}"
"\\dfrac{d^2}{ds^2}(\\dfrac{1}{s^2+1})=-\\dfrac{2(s^2+1)^2-2s(2(s^2+1)(2s))}{(s^2+1)^4}"
"=-\\dfrac{2(s^2+1-4s^2)}{(s^2+1)^3}=\\dfrac{2(3s^2-1)}{(s^2+1)^3}"
"s^2L(y)-0-0+L(y)=\\dfrac{2(3s^2-1)}{(s^2+1)^3}"
"(s^2+1)L(y)=\\dfrac{2(3s^2-1)}{(s^2+1)^3}"
"L(y)=\\dfrac{2(3s^2-1)}{(s^2+1)^4}"
"\\dfrac{2(3s^2-1)}{(s^2+1)^4}=\\dfrac{2(3s^2+3-4)}{(s^2+1)^4}"
"=\\dfrac{6}{(s^2+1)^3}-\\dfrac{8}{(s^2+1)^4}"
Taking the inverse transform then gives
"-8(\\dfrac{1}{48}t^3\\cos t-\\dfrac{1}{8}t^2\\sin t-\\dfrac{5}{16}t\\cos t+\\dfrac{5}{16}\\sin t)"
"-\\dfrac{3}{4}t^2\\sin t-\\dfrac{9}{4}t\\cos t+\\dfrac{9}{4}\\sin t"
"y(t)=-\\dfrac{1}{6}t^3\\cos t+\\dfrac{1}{4}t^2\\sin t+\\dfrac{1}{4}t\\cos t-\\dfrac{1}{4}\\sin t"
(iii)
"s^2L(y)-sy(0)-y'(0)+3(sL(y)-y(0))+7L(y)"
"=\\dfrac{s}{s^2+1}"
"(s^2+3s+7)L(y)=\\dfrac{2s^2+2+s}{s^2+1}"
"L(y)=\\dfrac{2s^2+s+2}{(s^2+1)(s^2+3s+7)}"
"\\dfrac{2s^2+s+2}{(s^2+1)(s^2+3s+7)}=\\dfrac{As+B}{s^2+1}+\\dfrac{Cs+D}{s^2+3s+7}"
"=\\dfrac{As^3+3As^2+7As+Bs^2+3Bs+7B}{(s^2+1)(s^2+3s+7)}"
"+\\dfrac{Cs^3+Cs+Ds^2+D}{(s^2+1)(s^2+3s+7)}"
"s^3: A+C=0"
"s^2: 3A+B+D=2"
"s^1: 7A+3B+C=1"
"s^0: 7B+D=2"
"14B+3B-2B=1=>B=\\dfrac{1}{15}"
"A=\\dfrac{2}{15}, C=-\\dfrac{2}{15}, D=\\dfrac{23}{15}"
"L(y)=\\dfrac{1}{15}(\\dfrac{2s+1}{s^2+1})+\\dfrac{1}{15}(\\dfrac{-2s+23}{s^2+3s+7})"
Taking the inverse transform then gives
"+\\dfrac{e^{-3t\/2}}{15}(\\dfrac{52\\sqrt{19}\\sin(\\dfrac{\\sqrt{19}t}{2})-38\\cos(\\dfrac{\\sqrt{19}t}{2})}{19})"
(iv)
"s^2L(y)-sy(0)-y'(0)+(sL(y)-y(0))+L(y)"
"=\\dfrac{6}{s^4}"
"s^2L(y)-2s-0+sL(y)-2+L(y)=\\dfrac{6}{s^4}"
"(s^2+s+1)L(y)=\\dfrac{2s^5+2s^4+6}{s^4}"
"L(y)=\\dfrac{2s^5+2s^4+6}{s^4(s^2+s+1)}"
"\\dfrac{2s^5+2s^4+6}{s^4(s^2+s+1)}=\\dfrac{As+B}{s^2+s+1}"
"+\\dfrac{C}{s}+\\dfrac{D}{s^2}+\\dfrac{E}{s^3}+\\dfrac{F}{s^4}"
"2s^5+2s^4+6=As^5+Bs^4+Cs^5+Cs^4+Cs^3"
"+Ds^4+Ds^3+Ds^2+Es^3+Es^2+Es+Fs^2+Fs+F"
"s^5: A+C=2"
"s^4: B+C+D=2"
"s^3: C+D+E=0"
"s^2: D+E+F=0"
"s^1: E+F=0"
"s^0: F=6"
"L(y)=-4\\dfrac{s+1}{s^2+s+1}+\\dfrac{6}{s}-\\dfrac{6}{s^3}+\\dfrac{6}{s^4}"
Taking the inverse transform then gives
"+6-3t^2+t^3"
Comments
Leave a comment