Answer to Question #243673 in Calculus for JaytheCreator

Question #243673

With the use of Laplace transform, solve the following I.V.Ps (i) 𝑦 ′′ + 2𝑦 ′ + 𝑦 = 𝑒 −𝑡 , 𝑦(0) = 1, 𝑦 ′ (0) = 3, (ii) 𝑦 ′′ + 𝑦 = 𝑡 2 sin 𝑡, 𝑦(0) = 𝑦 ′ (0) = 0’ (iii) 𝑦 ′′ + 3𝑦 ′ + 7𝑦 = cos 𝑡, 𝑦(0) = 0, 𝑦 ′ (0) = 2, (iv) 𝑦 ′′ + 𝑦 ′ + 𝑦 = 𝑡 3 , 𝑦(0) = 2, 𝑦 ′ (0) = 0.


1
Expert's answer
2021-09-29T12:00:51-0400

(i)


L(y+2y+y)=L(et)L(y''+2y'+y)=L(e^{-t})

s2L(y)sy(0)y(0)+2(sL(y)y(0))+L(y)s^2L(y)-sy(0)-y'(0)+2(sL(y)-y(0))+L(y)

=1s+1=\dfrac{1}{s+1}

s2L(y)s3+2sL(y)2+L(y)=1s+1s^2L(y)-s-3+2sL(y)-2+L(y)=\dfrac{1}{s+1}

(s2+2s+1)L(y)=s2+5s+s+5+1s+1(s^2+2s+1)L(y)=\dfrac{s^2+5s+s+5+1}{s+1}

L(y)=s2+6s+6(s+1)3L(y)=\dfrac{s^2+6s+6}{(s+1)^3}

s2+6s+6(s+1)3=s2+2s+1+4s+4+1(s+1)3\dfrac{s^2+6s+6}{(s+1)^3}=\dfrac{s^2+2s+1+4s+4+1}{(s+1)^3}

=1(s+1)+4(s+1)2+1(s+1)3=\dfrac{1}{(s+1)}+\dfrac{4}{(s+1)^2}+\dfrac{1}{(s+1)^3}

Taking the inverse transform then gives


y(t)=et+4tet+12t2ety(t)=e^{-t}+4te^{-t}+\dfrac{1}{2}t^2e^{-t}

(ii)


L(y+y)=L(t2sint)L(y''+y)=L(t^2\sin t)

s2L(y)sy(0)y(0)+L(y)=(1)2d2ds2(1s2+1)s^2L(y)-sy(0)-y'(0)+L(y)=(-1)^2\dfrac{d^2}{ds^2}(\dfrac{1}{s^2+1})

dds(1s2+1)=2s(s2+1)2\dfrac{d}{ds}(\dfrac{1}{s^2+1})=-\dfrac{2s}{(s^2+1)^2}

d2ds2(1s2+1)=2(s2+1)22s(2(s2+1)(2s))(s2+1)4\dfrac{d^2}{ds^2}(\dfrac{1}{s^2+1})=-\dfrac{2(s^2+1)^2-2s(2(s^2+1)(2s))}{(s^2+1)^4}

=2(s2+14s2)(s2+1)3=2(3s21)(s2+1)3=-\dfrac{2(s^2+1-4s^2)}{(s^2+1)^3}=\dfrac{2(3s^2-1)}{(s^2+1)^3}

s2L(y)00+L(y)=2(3s21)(s2+1)3s^2L(y)-0-0+L(y)=\dfrac{2(3s^2-1)}{(s^2+1)^3}

(s2+1)L(y)=2(3s21)(s2+1)3(s^2+1)L(y)=\dfrac{2(3s^2-1)}{(s^2+1)^3}

L(y)=2(3s21)(s2+1)4L(y)=\dfrac{2(3s^2-1)}{(s^2+1)^4}

2(3s21)(s2+1)4=2(3s2+34)(s2+1)4\dfrac{2(3s^2-1)}{(s^2+1)^4}=\dfrac{2(3s^2+3-4)}{(s^2+1)^4}

=6(s2+1)38(s2+1)4=\dfrac{6}{(s^2+1)^3}-\dfrac{8}{(s^2+1)^4}

Taking the inverse transform then gives



y(t)=6(18t2sint38tcost+38sint)y(t)=6(-\dfrac{1}{8}t^2\sin t-\dfrac{3}{8}t\cos t+\dfrac{3}{8}\sin t)

8(148t3cost18t2sint516tcost+516sint)-8(\dfrac{1}{48}t^3\cos t-\dfrac{1}{8}t^2\sin t-\dfrac{5}{16}t\cos t+\dfrac{5}{16}\sin t)


y(t)=16t3cost+t2sint+52tcost52sinty(t)=-\dfrac{1}{6}t^3\cos t+t^2\sin t+\dfrac{5}{2}t\cos t-\dfrac{5}{2}\sin t

34t2sint94tcost+94sint-\dfrac{3}{4}t^2\sin t-\dfrac{9}{4}t\cos t+\dfrac{9}{4}\sin t

y(t)=16t3cost+14t2sint+14tcost14sinty(t)=-\dfrac{1}{6}t^3\cos t+\dfrac{1}{4}t^2\sin t+\dfrac{1}{4}t\cos t-\dfrac{1}{4}\sin t

(iii)


L(y+3y+7y)=L(cost)L(y''+3y'+7y)=L(\cos t)

s2L(y)sy(0)y(0)+3(sL(y)y(0))+7L(y)s^2L(y)-sy(0)-y'(0)+3(sL(y)-y(0))+7L(y)

=ss2+1=\dfrac{s}{s^2+1}




s2L(y)02+3sL(y)0+7L(y)=ss2+1s^2L(y)-0-2+3sL(y)-0+7L(y)=\dfrac{s}{s^2+1}

(s2+3s+7)L(y)=2s2+2+ss2+1(s^2+3s+7)L(y)=\dfrac{2s^2+2+s}{s^2+1}

L(y)=2s2+s+2(s2+1)(s2+3s+7)L(y)=\dfrac{2s^2+s+2}{(s^2+1)(s^2+3s+7)}

2s2+s+2(s2+1)(s2+3s+7)=As+Bs2+1+Cs+Ds2+3s+7\dfrac{2s^2+s+2}{(s^2+1)(s^2+3s+7)}=\dfrac{As+B}{s^2+1}+\dfrac{Cs+D}{s^2+3s+7}

=As3+3As2+7As+Bs2+3Bs+7B(s2+1)(s2+3s+7)=\dfrac{As^3+3As^2+7As+Bs^2+3Bs+7B}{(s^2+1)(s^2+3s+7)}

+Cs3+Cs+Ds2+D(s2+1)(s2+3s+7)+\dfrac{Cs^3+Cs+Ds^2+D}{(s^2+1)(s^2+3s+7)}

s3:A+C=0s^3: A+C=0

s2:3A+B+D=2s^2: 3A+B+D=2

s1:7A+3B+C=1s^1: 7A+3B+C=1

s0:7B+D=2s^0: 7B+D=2


A=2B,C=2B,D=27BA=2B, C=-2B, D=2-7B

14B+3B2B=1=>B=11514B+3B-2B=1=>B=\dfrac{1}{15}

A=215,C=215,D=2315A=\dfrac{2}{15}, C=-\dfrac{2}{15}, D=\dfrac{23}{15}

L(y)=115(2s+1s2+1)+115(2s+23s2+3s+7)L(y)=\dfrac{1}{15}(\dfrac{2s+1}{s^2+1})+\dfrac{1}{15}(\dfrac{-2s+23}{s^2+3s+7})


Taking the inverse transform then gives


y(t)=115(sint+2cost)y(t)=\dfrac{1}{15}(\sin t+2\cos t)

+e3t/215(5219sin(19t2)38cos(19t2)19)+\dfrac{e^{-3t/2}}{15}(\dfrac{52\sqrt{19}\sin(\dfrac{\sqrt{19}t}{2})-38\cos(\dfrac{\sqrt{19}t}{2})}{19})

(iv)


L(y+y+y)=L(t3)L(y''+y'+y)=L(t^3)

s2L(y)sy(0)y(0)+(sL(y)y(0))+L(y)s^2L(y)-sy(0)-y'(0)+(sL(y)-y(0))+L(y)

=6s4=\dfrac{6}{s^4}

s2L(y)2s0+sL(y)2+L(y)=6s4s^2L(y)-2s-0+sL(y)-2+L(y)=\dfrac{6}{s^4}

(s2+s+1)L(y)=2s5+2s4+6s4(s^2+s+1)L(y)=\dfrac{2s^5+2s^4+6}{s^4}

L(y)=2s5+2s4+6s4(s2+s+1)L(y)=\dfrac{2s^5+2s^4+6}{s^4(s^2+s+1)}

2s5+2s4+6s4(s2+s+1)=As+Bs2+s+1\dfrac{2s^5+2s^4+6}{s^4(s^2+s+1)}=\dfrac{As+B}{s^2+s+1}

+Cs+Ds2+Es3+Fs4+\dfrac{C}{s}+\dfrac{D}{s^2}+\dfrac{E}{s^3}+\dfrac{F}{s^4}


2s5+2s4+6=As5+Bs4+Cs5+Cs4+Cs32s^5+2s^4+6=As^5+Bs^4+Cs^5+Cs^4+Cs^3

+Ds4+Ds3+Ds2+Es3+Es2+Es+Fs2+Fs+F+Ds^4+Ds^3+Ds^2+Es^3+Es^2+Es+Fs^2+Fs+F

s5:A+C=2s^5: A+C=2

s4:B+C+D=2s^4: B+C+D=2

s3:C+D+E=0s^3: C+D+E=0

s2:D+E+F=0s^2: D+E+F=0

s1:E+F=0s^1: E+F=0

s0:F=6s^0: F=6


F=6,E=6,D=0,C=6,B=4,A=4F=6, E=-6, D=0, C=6, B=-4, A=-4

L(y)=4s+1s2+s+1+6s6s3+6s4L(y)=-4\dfrac{s+1}{s^2+s+1}+\dfrac{6}{s}-\dfrac{6}{s^3}+\dfrac{6}{s^4}


Taking the inverse transform then gives


y(t)=43et/2(3sin(3t2)+3cos(3t2))y(t)=-\dfrac{4}{3}e^{-t/2}(\sqrt{3}\sin(\dfrac{\sqrt{3}t}{2})+3\cos(\dfrac{\sqrt{3}t}{2}))

+63t2+t3+6-3t^2+t^3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment