(i)
L(y′′+2y′+y)=L(e−t)
s2L(y)−sy(0)−y′(0)+2(sL(y)−y(0))+L(y)
=s+11
s2L(y)−s−3+2sL(y)−2+L(y)=s+11
(s2+2s+1)L(y)=s+1s2+5s+s+5+1
L(y)=(s+1)3s2+6s+6
(s+1)3s2+6s+6=(s+1)3s2+2s+1+4s+4+1
=(s+1)1+(s+1)24+(s+1)31 Taking the inverse transform then gives
y(t)=e−t+4te−t+21t2e−t
(ii)
L(y′′+y)=L(t2sint)
s2L(y)−sy(0)−y′(0)+L(y)=(−1)2ds2d2(s2+11)
dsd(s2+11)=−(s2+1)22s
ds2d2(s2+11)=−(s2+1)42(s2+1)2−2s(2(s2+1)(2s))
=−(s2+1)32(s2+1−4s2)=(s2+1)32(3s2−1)
s2L(y)−0−0+L(y)=(s2+1)32(3s2−1)
(s2+1)L(y)=(s2+1)32(3s2−1)
L(y)=(s2+1)42(3s2−1)
(s2+1)42(3s2−1)=(s2+1)42(3s2+3−4)
=(s2+1)36−(s2+1)48 Taking the inverse transform then gives
y(t)=6(−81t2sint−83tcost+83sint)
−8(481t3cost−81t2sint−165tcost+165sint)
y(t)=−61t3cost+t2sint+25tcost−25sint
−43t2sint−49tcost+49sint
y(t)=−61t3cost+41t2sint+41tcost−41sint
(iii)
L(y′′+3y′+7y)=L(cost)
s2L(y)−sy(0)−y′(0)+3(sL(y)−y(0))+7L(y)
=s2+1s
s2L(y)−0−2+3sL(y)−0+7L(y)=s2+1s
(s2+3s+7)L(y)=s2+12s2+2+s
L(y)=(s2+1)(s2+3s+7)2s2+s+2
(s2+1)(s2+3s+7)2s2+s+2=s2+1As+B+s2+3s+7Cs+D
=(s2+1)(s2+3s+7)As3+3As2+7As+Bs2+3Bs+7B
+(s2+1)(s2+3s+7)Cs3+Cs+Ds2+D s3:A+C=0
s2:3A+B+D=2
s1:7A+3B+C=1
s0:7B+D=2
A=2B,C=−2B,D=2−7B
14B+3B−2B=1=>B=151
A=152,C=−152,D=1523
L(y)=151(s2+12s+1)+151(s2+3s+7−2s+23)
Taking the inverse transform then gives
y(t)=151(sint+2cost)
+15e−3t/2(195219sin(219t)−38cos(219t))
(iv)
L(y′′+y′+y)=L(t3)
s2L(y)−sy(0)−y′(0)+(sL(y)−y(0))+L(y)
=s46
s2L(y)−2s−0+sL(y)−2+L(y)=s46
(s2+s+1)L(y)=s42s5+2s4+6
L(y)=s4(s2+s+1)2s5+2s4+6
s4(s2+s+1)2s5+2s4+6=s2+s+1As+B
+sC+s2D+s3E+s4F
2s5+2s4+6=As5+Bs4+Cs5+Cs4+Cs3
+Ds4+Ds3+Ds2+Es3+Es2+Es+Fs2+Fs+Fs5:A+C=2
s4:B+C+D=2
s3:C+D+E=0
s2:D+E+F=0
s1:E+F=0
s0:F=6
F=6,E=−6,D=0,C=6,B=−4,A=−4
L(y)=−4s2+s+1s+1+s6−s36+s46
Taking the inverse transform then gives
y(t)=−34e−t/2(3sin(23t)+3cos(23t))
+6−3t2+t3
Comments
Leave a comment