Integrate ∫dy/(y(y^2 + 1))
Let us integrate ∫dyy(y2+1):\int\frac{dy}{y(y^2 + 1)}:∫y(y2+1)dy:
∫dyy(y2+1)=∫(1y−yy2+1)dy=ln∣y∣−12∫(d(y2+1)y2+1)=ln∣y∣−12ln(y2+1)+C.\int\frac{dy}{y(y^2 + 1)}=\int(\frac{1}{y}-\frac{y}{y^2+1})dy =\ln|y|-\frac{1}{2}\int(\frac{d(y^2+1)}{y^2+1}) \\=\ln|y|-\frac{1}{2}\ln(y^2+1)+C.∫y(y2+1)dy=∫(y1−y2+1y)dy=ln∣y∣−21∫(y2+1d(y2+1))=ln∣y∣−21ln(y2+1)+C.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments