Question #228414
Y = In ( e^x + e^-x ) ; a = In^3
1
Expert's answer
2021-09-01T11:35:01-0400

The question is incomplete but we can find derivative here.

y=ln(ex+ex)dydx=ddx(ln(ex+ex))dydx=1ex+ex×ddx(ex+ex)dydx=1ex+ex×(exex)dydx=exexex+exy=ln(e^x+e^{-x}) \\\Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}(ln(e^x+e^{-x})) \\\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{e^x+e^{-x}}\times \dfrac{d}{dx}(e^x+e^{-x}) \\\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{e^x+e^{-x}}\times(e^x-e^{-x}) \\\Rightarrow \dfrac{dy}{dx}=\dfrac{e^x-e^{-x}}{e^x+e^{-x}}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS