The question is incomplete but we can find derivative here.
y=ln(ex+e−x)⇒dydx=ddx(ln(ex+e−x))⇒dydx=1ex+e−x×ddx(ex+e−x)⇒dydx=1ex+e−x×(ex−e−x)⇒dydx=ex−e−xex+e−xy=ln(e^x+e^{-x}) \\\Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}(ln(e^x+e^{-x})) \\\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{e^x+e^{-x}}\times \dfrac{d}{dx}(e^x+e^{-x}) \\\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{e^x+e^{-x}}\times(e^x-e^{-x}) \\\Rightarrow \dfrac{dy}{dx}=\dfrac{e^x-e^{-x}}{e^x+e^{-x}}y=ln(ex+e−x)⇒dxdy=dxd(ln(ex+e−x))⇒dxdy=ex+e−x1×dxd(ex+e−x)⇒dxdy=ex+e−x1×(ex−e−x)⇒dxdy=ex+e−xex−e−x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments