Question #228285

1. Solve the following initial value problem: Dy/DX = cos^2 y/4x-3; y(1)=π/4

2. Let F(X,y) =ycos(x^2 y^2) + y, then

(a) find the first partial derivatives Fx and Fy.

(b) using( 2) (a) above, find dy/dx.

(C) if F (X,y)=0, then find dy/dx using implicit differentiation to confirm your answer in part (2) (b) above.


1
Expert's answer
2021-08-25T09:14:22-0400

1.

dydx=cos2y4x3dycos2y=dx4x3dycos2y=14d(4x3)4x3tany=14ln(4x3)+Cy=arctan(14ln(4x3)+C)\frac{{dy}}{{dx}} = \frac{{{{\cos }^2}y}}{{4x - 3}} \Rightarrow \frac{{dy}}{{{{\cos }^2}y}} = \frac{{dx}}{{4x - 3}} \Rightarrow \frac{{dy}}{{{{\cos }^2}y}} = \frac{1}{4}\frac{{d(4x - 3)}}{{4x - 3}} \Rightarrow tany = \frac{1}{4}\ln (4x - 3) + C \Rightarrow y = arctan\left( {\frac{1}{4}\ln (4x - 3) + C} \right)

y(1)=π4arctan(14ln(43)+C)=π4arctanC=π4C=1y(1) = \frac{\pi }{4} \Rightarrow arctan\left( {\frac{1}{4}\ln (4 - 3) + C} \right) = \frac{\pi }{4} \Rightarrow arctanC = \frac{\pi }{4} \Rightarrow C = 1

Answer: y=arctan(14ln(4x3)+1)y = arctan\left( {\frac{1}{4}\ln (4x - 3) + 1} \right)

2.

F(x,y)=ycos(x2y2)+yF(x,y) = y\cos \left( {{x^2}{y^2}} \right) + y

(a) Fx=Fx=y(sin(x2y2))2xy2+0=2xy3sin(x2y2){{F'}_x} = \frac{{\partial F}}{{\partial x}} = y( - \sin ({x^2}{y^2})) \cdot 2x{y^2} + 0 = - 2x{y^3}\sin ({x^2}{y^2})

Fy=Fy=cos(x2y2)+y(sin(x2y2))2x2y+1=cos(x2y2)2x2y2sin(x2y2)+1{{F'}_y} = \frac{{\partial F}}{{\partial y}} = \cos \left( {{x^2}{y^2}} \right) + y( - \sin ({x^2}{y^2})) \cdot 2{x^2}y + 1 = \cos \left( {{x^2}{y^2}} \right) - 2{x^2}{y^2}\sin ({x^2}{y^2}) + 1

Answer: Fx=2xy3sin(x2y2){{F'}_x} = - 2x{y^3}\sin ({x^2}{y^2}) , Fy=cos(x2y2)2x2y2sin(x2y2)+1{{F'}_y} = \cos \left( {{x^2}{y^2}} \right) - 2{x^2}{y^2}\sin ({x^2}{y^2}) + 1

(b) dydx=FxFy=2xy3sin(x2y2)cos(x2y2)2x2y2sin(x2y2)+1\frac{{dy}}{{dx}} = -\frac{{\frac{{\partial F}}{{\partial x}}}}{{\frac{{\partial F}}{{\partial y}}}} = \frac{{ 2x{y^3}\sin ({x^2}{y^2})}}{{\cos \left( {{x^2}{y^2}} \right) - 2{x^2}{y^2}\sin ({x^2}{y^2}) + 1}}

Answer: dydx=2xy3sin(x2y2)cos(x2y2)2x2y2sin(x2y2)+1\frac{{dy}}{{dx}} = \frac{{ 2x{y^3}\sin ({x^2}{y^2})}}{{\cos \left( {{x^2}{y^2}} \right) - 2{x^2}{y^2}\sin ({x^2}{y^2}) + 1}}

(c) (ycos(x2y2)+y)x=0{\left( {y\cos \left( {{x^2}{y^2}} \right) + y} \right)^\prime }_x = 0

ycos(x2y2)+y(sin(x2y2))(2xy2+2x2yy)+y=0y'\cos \left( {{x^2}{y^2}} \right) + y( - \sin \left( {{x^2}{y^2}} \right)) \cdot \left( {2x{y^2} + 2{x^2}yy'} \right) + y' = 0

y(cos(x2y2)2x2y2sin(x2y2)+1)=2xy3sin(x2y2)y'\left( {\cos \left( {{x^2}{y^2}} \right) - 2{x^2}{y^2}\sin \left( {{x^2}{y^2}} \right) + 1} \right) = 2x{y^3}\sin \left( {{x^2}{y^2}} \right)

y=dydx=2xy3sin(x2y2)cos(x2y2)2x2y2sin(x2y2)+1y' = \frac{{dy}}{{dx}} = \frac{{2x{y^3}\sin \left( {{x^2}{y^2}} \right)}}{{\cos \left( {{x^2}{y^2}} \right) - 2{x^2}{y^2}\sin \left( {{x^2}{y^2}} \right) + 1}}

Answer: dydx=2xy3sin(x2y2)cos(x2y2)2x2y2sin(x2y2)+1\frac{{dy}}{{dx}} = \frac{{ 2x{y^3}\sin ({x^2}{y^2})}}{{\cos \left( {{x^2}{y^2}} \right) - 2{x^2}{y^2}\sin ({x^2}{y^2}) + 1}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS