1. Solve the following initial value problem: Dy/DX = cos^2 y/4x-3; y(1)=Ο/4
2. Let F(X,y) =ycos(x^2 y^2) + y, then
(a) find the first partial derivatives Fx and Fy.
(b) using( 2) (a) above, find dy/dx.
(C) if F (X,y)=0, then find dy/dx using implicit differentiation to confirm your answer in part (2) (b) above.
1.
"\\frac{{dy}}{{dx}} = \\frac{{{{\\cos }^2}y}}{{4x - 3}} \\Rightarrow \\frac{{dy}}{{{{\\cos }^2}y}} = \\frac{{dx}}{{4x - 3}} \\Rightarrow \\frac{{dy}}{{{{\\cos }^2}y}} = \\frac{1}{4}\\frac{{d(4x - 3)}}{{4x - 3}} \\Rightarrow tany = \\frac{1}{4}\\ln (4x - 3) + C \\Rightarrow y = arctan\\left( {\\frac{1}{4}\\ln (4x - 3) + C} \\right)"
"y(1) = \\frac{\\pi }{4} \\Rightarrow arctan\\left( {\\frac{1}{4}\\ln (4 - 3) + C} \\right) = \\frac{\\pi }{4} \\Rightarrow arctanC = \\frac{\\pi }{4} \\Rightarrow C = 1"
Answer: "y = arctan\\left( {\\frac{1}{4}\\ln (4x - 3) + 1} \\right)"
2.
"F(x,y) = y\\cos \\left( {{x^2}{y^2}} \\right) + y"
(a) "{{F'}_x} = \\frac{{\\partial F}}{{\\partial x}} = y( - \\sin ({x^2}{y^2})) \\cdot 2x{y^2} + 0 = - 2x{y^3}\\sin ({x^2}{y^2})"
"{{F'}_y} = \\frac{{\\partial F}}{{\\partial y}} = \\cos \\left( {{x^2}{y^2}} \\right) + y( - \\sin ({x^2}{y^2})) \\cdot 2{x^2}y + 1 = \\cos \\left( {{x^2}{y^2}} \\right) - 2{x^2}{y^2}\\sin ({x^2}{y^2}) + 1"
Answer: "{{F'}_x} = - 2x{y^3}\\sin ({x^2}{y^2})" , "{{F'}_y} = \\cos \\left( {{x^2}{y^2}} \\right) - 2{x^2}{y^2}\\sin ({x^2}{y^2}) + 1"
(b) "\\frac{{dy}}{{dx}} = -\\frac{{\\frac{{\\partial F}}{{\\partial x}}}}{{\\frac{{\\partial F}}{{\\partial y}}}} = \\frac{{ 2x{y^3}\\sin ({x^2}{y^2})}}{{\\cos \\left( {{x^2}{y^2}} \\right) - 2{x^2}{y^2}\\sin ({x^2}{y^2}) + 1}}"
Answer: "\\frac{{dy}}{{dx}} = \\frac{{ 2x{y^3}\\sin ({x^2}{y^2})}}{{\\cos \\left( {{x^2}{y^2}} \\right) - 2{x^2}{y^2}\\sin ({x^2}{y^2}) + 1}}"
(c) "{\\left( {y\\cos \\left( {{x^2}{y^2}} \\right) + y} \\right)^\\prime }_x = 0"
"y'\\cos \\left( {{x^2}{y^2}} \\right) + y( - \\sin \\left( {{x^2}{y^2}} \\right)) \\cdot \\left( {2x{y^2} + 2{x^2}yy'} \\right) + y' = 0"
"y'\\left( {\\cos \\left( {{x^2}{y^2}} \\right) - 2{x^2}{y^2}\\sin \\left( {{x^2}{y^2}} \\right) + 1} \\right) = 2x{y^3}\\sin \\left( {{x^2}{y^2}} \\right)"
"y' = \\frac{{dy}}{{dx}} = \\frac{{2x{y^3}\\sin \\left( {{x^2}{y^2}} \\right)}}{{\\cos \\left( {{x^2}{y^2}} \\right) - 2{x^2}{y^2}\\sin \\left( {{x^2}{y^2}} \\right) + 1}}"
Answer: "\\frac{{dy}}{{dx}} = \\frac{{ 2x{y^3}\\sin ({x^2}{y^2})}}{{\\cos \\left( {{x^2}{y^2}} \\right) - 2{x^2}{y^2}\\sin ({x^2}{y^2}) + 1}}"
Comments
Leave a comment