1.
dxdy=4x−3cos2y⇒cos2ydy=4x−3dx⇒cos2ydy=414x−3d(4x−3)⇒tany=41ln(4x−3)+C⇒y=arctan(41ln(4x−3)+C)
y(1)=4π⇒arctan(41ln(4−3)+C)=4π⇒arctanC=4π⇒C=1
Answer: y=arctan(41ln(4x−3)+1)
2.
F(x,y)=ycos(x2y2)+y
(a) F′x=∂x∂F=y(−sin(x2y2))⋅2xy2+0=−2xy3sin(x2y2)
F′y=∂y∂F=cos(x2y2)+y(−sin(x2y2))⋅2x2y+1=cos(x2y2)−2x2y2sin(x2y2)+1
Answer: F′x=−2xy3sin(x2y2) , F′y=cos(x2y2)−2x2y2sin(x2y2)+1
(b) dxdy=−∂y∂F∂x∂F=cos(x2y2)−2x2y2sin(x2y2)+12xy3sin(x2y2)
Answer: dxdy=cos(x2y2)−2x2y2sin(x2y2)+12xy3sin(x2y2)
(c) (ycos(x2y2)+y)′x=0
y′cos(x2y2)+y(−sin(x2y2))⋅(2xy2+2x2yy′)+y′=0
y′(cos(x2y2)−2x2y2sin(x2y2)+1)=2xy3sin(x2y2)
y′=dxdy=cos(x2y2)−2x2y2sin(x2y2)+12xy3sin(x2y2)
Answer: dxdy=cos(x2y2)−2x2y2sin(x2y2)+12xy3sin(x2y2)
Comments