Question #227719

The position of a particle is given by r(t)= t2i + e2tj + In(t+1)k. Find the minimum velocity of the particle


1
Expert's answer
2021-08-20T09:00:56-0400
r(t)=t2i+e2tj+ln(t+1)kr(t)=t^2i + e^{2t}j + \ln(t+1)k

v(t)=r(t)=2ti+2e2tj+11+tkv(t)=r'(t)=2ti +2 e^{2t}j + \dfrac{1}{1+t} k

Let f(t)=(v(t))2=(2t)2+(2e2t)2+(11+t)2f(t)=(|v(t)|)^2=(2t)^2+(2e^{2t})^2+(\dfrac{1}{1+t})^2


f(t)=8t+16e4t2(1+t)30+162>0,t0f'(t)=8t+16e^{4t}-\dfrac{2}{(1+t)^3}\geq0+16-2>0, t\geq0

Therefore the function f(t)f(t) increases for t>0.t>0.

Since t0t\geq0 (time), then the minimum value of ff for t0t\geq 0 is


f(0)=(2(0))2+(2e2(0))2+(11+0)2=5f(0)=(2(0))^2+(2e^{2(0)})^2+(\dfrac{1}{1+0})^2=5

The minimum velocity of the particle is 5.\sqrt{5}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS