r ( t ) = t 2 i + e 2 t j + ln ( t + 1 ) k r(t)=t^2i + e^{2t}j + \ln(t+1)k r ( t ) = t 2 i + e 2 t j + ln ( t + 1 ) k
v ( t ) = r ′ ( t ) = 2 t i + 2 e 2 t j + 1 1 + t k v(t)=r'(t)=2ti +2 e^{2t}j + \dfrac{1}{1+t} k v ( t ) = r ′ ( t ) = 2 t i + 2 e 2 t j + 1 + t 1 k Let f ( t ) = ( ∣ v ( t ) ∣ ) 2 = ( 2 t ) 2 + ( 2 e 2 t ) 2 + ( 1 1 + t ) 2 f(t)=(|v(t)|)^2=(2t)^2+(2e^{2t})^2+(\dfrac{1}{1+t})^2 f ( t ) = ( ∣ v ( t ) ∣ ) 2 = ( 2 t ) 2 + ( 2 e 2 t ) 2 + ( 1 + t 1 ) 2
f ′ ( t ) = 8 t + 16 e 4 t − 2 ( 1 + t ) 3 ≥ 0 + 16 − 2 > 0 , t ≥ 0 f'(t)=8t+16e^{4t}-\dfrac{2}{(1+t)^3}\geq0+16-2>0, t\geq0 f ′ ( t ) = 8 t + 16 e 4 t − ( 1 + t ) 3 2 ≥ 0 + 16 − 2 > 0 , t ≥ 0 Therefore the function f ( t ) f(t) f ( t ) increases for t > 0. t>0. t > 0.
Since t ≥ 0 t\geq0 t ≥ 0 (time), then the minimum value of f f f for t ≥ 0 t\geq 0 t ≥ 0 is
f ( 0 ) = ( 2 ( 0 ) ) 2 + ( 2 e 2 ( 0 ) ) 2 + ( 1 1 + 0 ) 2 = 5 f(0)=(2(0))^2+(2e^{2(0)})^2+(\dfrac{1}{1+0})^2=5 f ( 0 ) = ( 2 ( 0 ) ) 2 + ( 2 e 2 ( 0 ) ) 2 + ( 1 + 0 1 ) 2 = 5 The minimum velocity of the particle is 5 . \sqrt{5}. 5 .
Comments