r(t)=t2i+e2tj+ln(t+1)k
v(t)=r′(t)=2ti+2e2tj+1+t1k Let f(t)=(∣v(t)∣)2=(2t)2+(2e2t)2+(1+t1)2
f′(t)=8t+16e4t−(1+t)32≥0+16−2>0,t≥0Therefore the function f(t) increases for t>0.
Since t≥0 (time), then the minimum value of f for t≥0 is
f(0)=(2(0))2+(2e2(0))2+(1+01)2=5 The minimum velocity of the particle is 5.
Comments