Question #227621

True or False.

The value of the integral 12x(x21)8dx\displaystyle{\int_{1}^{2}x(x^2-1)^8 dx} is an integer


1
Expert's answer
2021-08-23T15:42:54-0400

12x(x21)8dx\displaystyle{\int_{1}^{2}x(x^2-1)^8 dx}


Let substitute, u=x21u=x^2-1


Hence, dudx=2x,\frac{du}{dx}=2x, dx=12xdudx=\frac{1}{2x}du


=12u8du=\frac{1}{2}\smallint{u^8du}


Now solving, u8du\smallint{u^8du}


Apply power rule


u8du=un+1n+1\smallint{u^8du}=\frac{u^{n+1}}{n+1} With n=8n=8


=u918=\frac{u^9}{18}


Undo the substitution. u=x21u=x^2-1


=(x21)918=\frac{(x^2-1)^9}{18}


Replacing x with 2 and 1


=(221)9180=1093.5=\frac{(2^2-1)^9}{18}-0=1093.5


False because 1093.5 is not a whole valued number



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS