Which of the following represents the integral "\\displaystyle{\\int \\frac{x}{\\sqrt{1+x^2}}dx}"
1) "\\dfrac{x^2}{\\sqrt{1+x}}+C"
2) "\\ln{(1+x^2)}+C"
3) "\\sqrt{1+x^2}+C"
4) "\\dfrac{x^2}{\\sqrt{1+x^2}}+C"
We rewrite the integral as: "\\int\\frac{x}{\\sqrt{1+x^2}}dx=\\frac{1}{2}\\int\\frac{d(1+x^2)}{\\sqrt{1+x^2}}" and make the change of variables: "z=1+x^2". We receive: "\\int\\frac{x}{\\sqrt{1+x^2}}dx=\\frac{1}{2}\\int\\frac{d(1+x^2)}{\\sqrt{1+x^2}}=\\frac{1}{2}\\int\\frac{dz}{\\sqrt{z}}"
We integrate the latter and receive: "\\frac{1}{2}\\int\\frac{dz}{\\sqrt{z}}=\\sqrt{z}+C=\\sqrt{1+x^2}+C,C\\in{\\mathbb{R}}".
Comments
Leave a comment