Question #227620

Which of the following represents the integral  x1+x2dx\displaystyle{\int \frac{x}{\sqrt{1+x^2}}dx}

1) x21+x+C\dfrac{x^2}{\sqrt{1+x}}+C

2) ln(1+x2)+C\ln{(1+x^2)}+C

3) 1+x2+C\sqrt{1+x^2}+C

4) x21+x2+C\dfrac{x^2}{\sqrt{1+x^2}}+C


1
Expert's answer
2021-08-23T18:03:02-0400

We rewrite the integral as: x1+x2dx=12d(1+x2)1+x2\int\frac{x}{\sqrt{1+x^2}}dx=\frac{1}{2}\int\frac{d(1+x^2)}{\sqrt{1+x^2}} and make the change of variables: z=1+x2z=1+x^2. We receive: x1+x2dx=12d(1+x2)1+x2=12dzz\int\frac{x}{\sqrt{1+x^2}}dx=\frac{1}{2}\int\frac{d(1+x^2)}{\sqrt{1+x^2}}=\frac{1}{2}\int\frac{dz}{\sqrt{z}}

We integrate the latter and receive: 12dzz=z+C=1+x2+C,CR\frac{1}{2}\int\frac{dz}{\sqrt{z}}=\sqrt{z}+C=\sqrt{1+x^2}+C,C\in{\mathbb{R}}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS