Which of the following values represent the definite integral
"\\intop\\begin{matrix}\n \\pi\/4 \\\\\n 0 \n\\end{matrix}" "e" tanθ sec2 θ dθ
1) e2
2) e - 1
3) e/2
4) e
The correct answer is
2) e - 1
Solution;
Apply integration by substitution as follows;
Let "u=tan(\\theta) \\implies du=sec^2(\\theta)d\\theta"
This gives a ne lower bound and upper bound as follows;
Lower bound "u=tan(0) =0"
Upper bound "u=tan({\\pi\\over 4}) =1"
"\\implies \\int_0^{\\pi\\over 4}e^{tan(\\theta)}sec^2(\\theta)d\\theta=\\int_0^1e^udu=[e^u]_0^1=e^1-e^0=e-1"
Comments
Leave a comment