Question #226881

Consider the function 𝑓(𝑥, 𝑦) = 𝑥𝑦 ( 𝑥 2−𝑦 2 𝑥 2+𝑦2 ) , (𝑥, 𝑦) ≠ (0, 0). Show that lim (𝑥,𝑦)→(0,0) 𝑓(𝑥, 𝑦) = 0


1
Expert's answer
2021-08-17T18:16:06-0400

Convert to to polar coordinates: x=rcos(θ),y=rsin(θ)x=r\cos(\theta), y=r\sin (\theta)


lim(x,y)(0,0)xy(x2y2)x2+y2\lim\limits_{(x,y)\to(0,0)}\dfrac{xy(x^2-y^2)}{x^2+y^2}

=limr0rcos(θ)rsin(θ)(r2cos2(θ)r2sin2(θ))r2cos2(θ)+r2sin2(θ)=\lim\limits_{r\to0}\dfrac{r\cos(\theta) r\sin(\theta)(r^2\cos^2(\theta)-r^2\sin^2(\theta))}{r^2\cos^2(\theta)+r^2\sin^2(\theta)}

=limr0r4cos(θ)sin(θ)(cos2(θ)sin2(θ))r2=\lim\limits_{r\to0}\dfrac{r^4\cos(\theta) \sin(\theta)(\cos^2(\theta)-\sin^2(\theta))}{r^2}


=limr012r2sin(2θ)cos(2θ)=\lim\limits_{r\to0}\dfrac{1}{2}r^2 \sin(2\theta)\cos(2\theta)

=12(0)2sin(2θ)cos(2θ)=0=\dfrac{1}{2}(0)^2 \sin(2\theta)\cos(2\theta)=0

Therefore


lim(x,y)(0,0)xy(x2y2)x2+y2=0\lim\limits_{(x,y)\to(0,0)}\dfrac{xy(x^2-y^2)}{x^2+y^2}=0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS