Consider the function 𝑓(𝑥, 𝑦) = 𝑥𝑦 ( 𝑥 2−𝑦 2 𝑥 2+𝑦2 ) , (𝑥, 𝑦) ≠ (0, 0). Show that lim (𝑥,𝑦)→(0,0) 𝑓(𝑥, 𝑦) = 0
lim(𝑥,𝑦)→(0,0)𝑓(𝑥,𝑦)=lim(𝑥,𝑦)→(0,0)𝑥𝑦(𝑥2−𝑦2𝑥2+𝑦2) put y=mx,=limx→0mx2(𝑥2−m2𝑥4+m2x2)=0lim_{(𝑥,𝑦)→(0,0)} 𝑓(𝑥, 𝑦)\\ =lim_{(𝑥,𝑦)→(0,0)} 𝑥𝑦 ( 𝑥^2−𝑦^2 𝑥^2+𝑦^2 )\\ \text{ put y=mx},\\ =lim_{x→0} mx^2 ( 𝑥^2−m^2 𝑥^4+m^2x^2 )\\ =0lim(x,y)→(0,0)f(x,y)=lim(x,y)→(0,0)xy(x2−y2x2+y2) put y=mx,=limx→0mx2(x2−m2x4+m2x2)=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments