x 2 + 2 = 3 x + 2 x^2+2=3x+2 x 2 + 2 = 3 x + 2  
x 2 = 3 x x^2=3x x 2 = 3 x  
x 1 = 0 , x 2 = 3 x_1=0, x_2=3 x 1  = 0 , x 2  = 3 
 x = 0 , y = 0 + 2 = 2 , P o i n t ( 0 , 2 ) x=0, y=0+2=2, Point(0,2) x = 0 , y = 0 + 2 = 2 , P o in t ( 0 , 2 ) 
x = 3 , y = 3 2 + 2 = 11 , P o i n t ( 3 , 11 ) x=3, y=3^2+2=11, Point(3,11) x = 3 , y = 3 2 + 2 = 11 , P o in t ( 3 , 11 ) 
y = x 2 + 2 , 0 ≤ x ≤ 3 = > x = y − 2 , 2 ≤ y ≤ 11 y=x^2+2, 0\leq x\leq 3=>x=\sqrt{y-2}, 2\leq y\leq 11 y = x 2 + 2 , 0 ≤ x ≤ 3 => x = y − 2  , 2 ≤ y ≤ 11  
y = 3 x + 2 , 0 ≤ x ≤ 3 = > x = y − 2 3 , 2 ≤ y ≤ 11 y=3x+2, 0\leq x\leq 3=>x=\dfrac{y-2}{3}, 2\leq y\leq 11 y = 3 x + 2 , 0 ≤ x ≤ 3 => x = 3 y − 2  , 2 ≤ y ≤ 11  
V = π ∫ 2 11 ( ( o u t e r   r a d i u s ) 2 − ( i n n e r   r a d i u s ) 2 ) d y V=\pi\displaystyle\int_{2}^{11}((outer\ radius)^2-(inner\ radius)^2)dy V = π ∫ 2 11  (( o u t er   r a d i u s ) 2 − ( inn er   r a d i u s ) 2 ) d y  
= π ∫ 2 11 ( ( 3 − y − 2 3 ) 2 − ( 3 − y − 2 ) 2 ) d y =\pi\displaystyle\int_{2}^{11}((3-\dfrac{y-2}{3})^2-(3-\sqrt{y-2})^2)dy = π ∫ 2 11  (( 3 − 3 y − 2  ) 2 − ( 3 − y − 2  ) 2 ) d y  
= π ∫ 2 11 ( 121 9 − 22 9 y + 1 9 y 2 − 9 + 6 y − 2 − y + 2 ) d y =\pi\displaystyle\int_{2}^{11}(\dfrac{121}{9}-\dfrac{22}{9}y+\dfrac{1}{9}y^2-9+6\sqrt{y-2}-y+2)dy = π ∫ 2 11  ( 9 121  − 9 22  y + 9 1  y 2 − 9 + 6 y − 2  − y + 2 ) d y  
= π ∫ 2 11 ( 1 9 y 2 − 31 9 y + 58 9 + 6 y − 2 ) d y =\pi\displaystyle\int_{2}^{11}(\dfrac{1}{9}y^2-\dfrac{31}{9}y+\dfrac{58}{9}+6\sqrt{y-2})dy = π ∫ 2 11  ( 9 1  y 2 − 9 31  y + 9 58  + 6 y − 2  ) d y  
= π [ 1 27 y 3 − 31 18 y 2 + 58 9 y + 4 ( y − 2 ) 3 / 2 ] 11 2 =\pi\bigg[\dfrac{1}{27}y^3-\dfrac{31}{18}y^2+\dfrac{58}{9}y+4(y-2)^{3/2}\bigg]\begin{matrix}
   11 \\
  2
\end{matrix} = π [ 27 1  y 3 − 18 31  y 2 + 9 58  y + 4 ( y − 2 ) 3/2 ] 11 2   
= 27 π 2 ( u n i t s 3 ) =\dfrac{27\pi}{2}(units^3) = 2 27 π  ( u ni t s 3 )  
Comments