The area bounded by the curves y=x2+2 and y=3x+2 from intersection point to intersection point is rotated around x=3. Determine the formula for the solid of revolution which is obtianed from this rotation. Explain your logic.
"x^2=3x"
"x_1=0, x_2=3"
"x=0, y=0+2=2, Point(0,2)"
"x=3, y=3^2+2=11, Point(3,11)"
"y=3x+2, 0\\leq x\\leq 3=>x=\\dfrac{y-2}{3}, 2\\leq y\\leq 11"
"=\\pi\\displaystyle\\int_{2}^{11}((3-\\dfrac{y-2}{3})^2-(3-\\sqrt{y-2})^2)dy"
"=\\pi\\displaystyle\\int_{2}^{11}(\\dfrac{121}{9}-\\dfrac{22}{9}y+\\dfrac{1}{9}y^2-9+6\\sqrt{y-2}-y+2)dy"
"=\\pi\\displaystyle\\int_{2}^{11}(\\dfrac{1}{9}y^2-\\dfrac{31}{9}y+\\dfrac{58}{9}+6\\sqrt{y-2})dy"
"=\\pi\\bigg[\\dfrac{1}{27}y^3-\\dfrac{31}{18}y^2+\\dfrac{58}{9}y+4(y-2)^{3\/2}\\bigg]\\begin{matrix}\n 11 \\\\\n 2\n\\end{matrix}"
"=\\dfrac{27\\pi}{2}(units^3)"
Comments
Leave a comment