Question #227094

The area bounded by the curves y=x2+2 and y=3x+2 from intersection point to intersection point is rotated around x=3. Determine the formula for the solid of revolution which is obtianed from this rotation. Explain your logic.


1
Expert's answer
2021-08-18T14:09:18-0400
x2+2=3x+2x^2+2=3x+2

x2=3xx^2=3x

x1=0,x2=3x_1=0, x_2=3



x=0,y=0+2=2,Point(0,2)x=0, y=0+2=2, Point(0,2)


x=3,y=32+2=11,Point(3,11)x=3, y=3^2+2=11, Point(3,11)





y=x2+2,0x3=>x=y2,2y11y=x^2+2, 0\leq x\leq 3=>x=\sqrt{y-2}, 2\leq y\leq 11

y=3x+2,0x3=>x=y23,2y11y=3x+2, 0\leq x\leq 3=>x=\dfrac{y-2}{3}, 2\leq y\leq 11


V=π211((outer radius)2(inner radius)2)dyV=\pi\displaystyle\int_{2}^{11}((outer\ radius)^2-(inner\ radius)^2)dy

=π211((3y23)2(3y2)2)dy=\pi\displaystyle\int_{2}^{11}((3-\dfrac{y-2}{3})^2-(3-\sqrt{y-2})^2)dy

=π211(1219229y+19y29+6y2y+2)dy=\pi\displaystyle\int_{2}^{11}(\dfrac{121}{9}-\dfrac{22}{9}y+\dfrac{1}{9}y^2-9+6\sqrt{y-2}-y+2)dy

=π211(19y2319y+589+6y2)dy=\pi\displaystyle\int_{2}^{11}(\dfrac{1}{9}y^2-\dfrac{31}{9}y+\dfrac{58}{9}+6\sqrt{y-2})dy

=π[127y33118y2+589y+4(y2)3/2]112=\pi\bigg[\dfrac{1}{27}y^3-\dfrac{31}{18}y^2+\dfrac{58}{9}y+4(y-2)^{3/2}\bigg]\begin{matrix} 11 \\ 2 \end{matrix}

=27π2(units3)=\dfrac{27\pi}{2}(units^3)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS