Given integral is, "I = \\int \\frac{dx}{e^x\\sqrt{1-e^{-2x}}}"
"I = \\int \\frac{dx}{e^x\\sqrt{1-e^{-2x}}} = \\int \\frac{e^{-x}dx}{\\sqrt{1-e^{-2x}}}"
Let "e^{-x} = t \\implies e^{-x}dx = -dt"
"I= -\\int \\frac{dt}{\\sqrt{1-t^2}}"
Using integration formula, "\\int \\frac{dx}{\\sqrt{1-x^2}} = sin^{-1}(x) + C"
Then,
"I= -\\int \\frac{dt}{\\sqrt{1-t^2}} =- sin^{-1}(t) + C"
Putting value of t,
"I = -sin^{-1}(e^{-x}) + C"
Comments
Leave a comment