Given integral is, I=∫dxex1−e−2xI = \int \frac{dx}{e^x\sqrt{1-e^{-2x}}}I=∫ex1−e−2xdx
I=∫dxex1−e−2x=∫e−xdx1−e−2xI = \int \frac{dx}{e^x\sqrt{1-e^{-2x}}} = \int \frac{e^{-x}dx}{\sqrt{1-e^{-2x}}}I=∫ex1−e−2xdx=∫1−e−2xe−xdx
Let e−x=t ⟹ e−xdx=−dte^{-x} = t \implies e^{-x}dx = -dte−x=t⟹e−xdx=−dt
I=−∫dt1−t2I= -\int \frac{dt}{\sqrt{1-t^2}}I=−∫1−t2dt
Using integration formula, ∫dx1−x2=sin−1(x)+C\int \frac{dx}{\sqrt{1-x^2}} = sin^{-1}(x) + C∫1−x2dx=sin−1(x)+C
Then,
I=−∫dt1−t2=−sin−1(t)+CI= -\int \frac{dt}{\sqrt{1-t^2}} =- sin^{-1}(t) + CI=−∫1−t2dt=−sin−1(t)+C
Putting value of t,
I=−sin−1(e−x)+CI = -sin^{-1}(e^{-x}) + CI=−sin−1(e−x)+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments