Question #226824
Provide all details and eveluate the integral dx/e^x square root of 1-e^_2x
1
Expert's answer
2021-08-23T04:47:15-0400

Given integral is, I=dxex1e2xI = \int \frac{dx}{e^x\sqrt{1-e^{-2x}}}


I=dxex1e2x=exdx1e2xI = \int \frac{dx}{e^x\sqrt{1-e^{-2x}}} = \int \frac{e^{-x}dx}{\sqrt{1-e^{-2x}}}


Let ex=t    exdx=dte^{-x} = t \implies e^{-x}dx = -dt


I=dt1t2I= -\int \frac{dt}{\sqrt{1-t^2}}


Using integration formula, dx1x2=sin1(x)+C\int \frac{dx}{\sqrt{1-x^2}} = sin^{-1}(x) + C


Then,


I=dt1t2=sin1(t)+CI= -\int \frac{dt}{\sqrt{1-t^2}} =- sin^{-1}(t) + C


Putting value of t,


I=sin1(ex)+CI = -sin^{-1}(e^{-x}) + C





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS