Determine the following integrals:
1. "\\smallint" [x-2/x^2][X+2/x^2]DX
2. "\\smallint" e^5x[e^2x/7+3/e^3x]DX
3."\\smallint" 1/(4-√3x)^3 DX
4. "\\smallint" π/40 (tan X)^3 (sec X )^3 dx
"1. \\int [x-\\frac{2}{x^2}][x+\\frac{2}{x^2}]dx\\\\\n=\\int [x^2-\\frac{4}{x^4}]dx\\\\\n= \\frac{x^3}{3}+\\frac{4}{3x^3}+c\\\\\n\n\n2. \\int e^{5x}[\\frac{e^{2x}}{7}+\\frac{3}{e^{3x}}]dx\\\\\n=\\int [\\frac{e^{7x}}{7}+3{e^{2x}}]dx\\\\\n=\\frac{e^{7x}}{49}+\\frac{3e^{2x}}{2}+c\\\\\n\n\n\n3.\\int \\frac{1}{(4-\\sqrt{3x})^3}dx\\\\\n\\text{put}\\\\\n4-\\sqrt{3x}=t\\\\\n=>\\frac{-3}{2\\sqrt{3x}}dx=dt\\\\\n\\implies dx=\\frac{-2}{3}(4-t)dt\\\\\n\\int \\frac{1}{(4-\\sqrt{3x})^3}dx\\\\\n=\\frac{-2}{3} \\int \\frac{4-t}{t^3}dt\\\\\n=\\frac{-2}{3} \\int (4t^{-3}-t^{-2})dt\\\\\n=\\frac{-2}{3}(\\frac{-2}{t^{2}}+\\frac{1}{3t^3})+c\\\\\n=\\frac{-2}{3}(\\frac{-2}{(4-\\sqrt{3x})\n^{2}}+\\frac{1}{3(4-\\sqrt{3x})^3})+c\\\\\n\n4. \\int^{\u03c0\/4}_{0 } (tan x)^3 (sec x )^3dx\\\\ \n\\text{put},\\\\\nsecx=t\\\\\n=>tanx \\space secx \\space\n dx=dt\\\\\n\\text{and using }tan^2x=1-sec^2x,\n\\text{we get}\\\\\n\\int^{\u03c0\/4}_{0 } (tan x)^3 (sec x )^3dx\\\\\n=\\int^{\u03c0\/4}_{0 } (secx)^2(tan x )^2tanx \\space secx\\space dx\\\\\n=\\int^{\u03c0\/4}_{0} (sec x )^2(1-sec^2x)tanx \\space secx\\space dx\\\\\n =\\int^{\\sqrt2}_1 t^2(1-t^2)dt\\\\\n=\\int^{\\sqrt2}_1 (t^2-t^4)dt\\\\\n=[\\frac{t^3}{3}-\\frac{t^5}{5}]^{\\sqrt2}_1\\\\\n=-0.32"
Comments
Leave a comment