Answer to Question #226681 in Calculus for Portia

Question #226681

Determine the following integrals:

1. \smallint [x-2/x^2][X+2/x^2]DX

2. \smallint e^5x[e^2x/7+3/e^3x]DX

3.\smallint 1/(4-√3x)^3 DX

4. \smallint π/40 (tan X)^3 (sec X )^3 dx





1
Expert's answer
2021-09-05T17:56:27-0400

1.[x2x2][x+2x2]dx=[x24x4]dx=x33+43x3+c2.e5x[e2x7+3e3x]dx=[e7x7+3e2x]dx=e7x49+3e2x2+c3.1(43x)3dxput43x=t=>323xdx=dt    dx=23(4t)dt1(43x)3dx=234tt3dt=23(4t3t2)dt=23(2t2+13t3)+c=23(2(43x)2+13(43x)3)+c4.0π/4(tanx)3(secx)3dxput,secx=t=>tanx secx dx=dtand using tan2x=1sec2x,we get0π/4(tanx)3(secx)3dx=0π/4(secx)2(tanx)2tanx secx dx=0π/4(secx)2(1sec2x)tanx secx dx=12t2(1t2)dt=12(t2t4)dt=[t33t55]12=0.321. \int [x-\frac{2}{x^2}][x+\frac{2}{x^2}]dx\\ =\int [x^2-\frac{4}{x^4}]dx\\ = \frac{x^3}{3}+\frac{4}{3x^3}+c\\ 2. \int e^{5x}[\frac{e^{2x}}{7}+\frac{3}{e^{3x}}]dx\\ =\int [\frac{e^{7x}}{7}+3{e^{2x}}]dx\\ =\frac{e^{7x}}{49}+\frac{3e^{2x}}{2}+c\\ 3.\int \frac{1}{(4-\sqrt{3x})^3}dx\\ \text{put}\\ 4-\sqrt{3x}=t\\ =>\frac{-3}{2\sqrt{3x}}dx=dt\\ \implies dx=\frac{-2}{3}(4-t)dt\\ \int \frac{1}{(4-\sqrt{3x})^3}dx\\ =\frac{-2}{3} \int \frac{4-t}{t^3}dt\\ =\frac{-2}{3} \int (4t^{-3}-t^{-2})dt\\ =\frac{-2}{3}(\frac{-2}{t^{2}}+\frac{1}{3t^3})+c\\ =\frac{-2}{3}(\frac{-2}{(4-\sqrt{3x}) ^{2}}+\frac{1}{3(4-\sqrt{3x})^3})+c\\ 4. \int^{π/4}_{0 } (tan x)^3 (sec x )^3dx\\ \text{put},\\ secx=t\\ =>tanx \space secx \space dx=dt\\ \text{and using }tan^2x=1-sec^2x, \text{we get}\\ \int^{π/4}_{0 } (tan x)^3 (sec x )^3dx\\ =\int^{π/4}_{0 } (secx)^2(tan x )^2tanx \space secx\space dx\\ =\int^{π/4}_{0} (sec x )^2(1-sec^2x)tanx \space secx\space dx\\ =\int^{\sqrt2}_1 t^2(1-t^2)dt\\ =\int^{\sqrt2}_1 (t^2-t^4)dt\\ =[\frac{t^3}{3}-\frac{t^5}{5}]^{\sqrt2}_1\\ =-0.32


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment