Answer to Question #226666 in Calculus for Portia

Question #226666

A). Determine the following limits (if they exist)

1. Lim X approaches -5 x^2+x-20/3(X+5)

2. Lim t approaches 0 sin5t/t^2+4t

3. Lim approaches -infinity 3-|X|/2|X|+1

4. Lim X approaches 0 2x/3-√x+9

5. Lim X approaches +infinity 2x+x^2+1/1-x+2x^2


1
Expert's answer
2021-08-17T10:14:11-0400

1.limx5x2+x203(x+5)=limx5(x+5)(x4)3(x+5)=limx5x43=93=32.limx0sin(5t)t2+4t=limx05cos(5t)2t+4=543.limx3x2x+1=limx3x12+1x=124.limx02x3x+9=2(0)30+9=012=05.limx2x+x2+11x+2x2=limx2/x+1+1/x21/x21/x+2=1+0+020+0=12\displaystyle 1.\\ \begin{aligned} \lim_{x \to -5} \frac{x^2+x-20}{3(x+5)} &= \lim_{x \to -5} \frac{(x + 5)(x - 4)}{3(x+5)} \\&= \lim_{x \to -5} \frac{x - 4}{3} \\&= \frac{-9}{3} = -3 \end{aligned}\\ 2.\\ \begin{aligned} \lim_{x \to 0} \frac{\sin(5t)}{t^2+4t} &= \lim_{x \to 0} \frac{5\cos(5t)}{2t + 4} \\&= \frac{5}{4} \end{aligned}\\ 3.\\ \begin{aligned} \lim_{x \to -\infty} \frac{3-|x|}{2|x|+1} &= \lim_{x \to -\infty} \frac{\frac{3}{|x|} - 1}{2+\frac{1}{|x|}} \\&= \frac{-1}{2} \end{aligned}\\ 4.\\ \begin{aligned} \lim_{x \to 0} \frac{2x}{3 - \sqrt{x} + 9} &= \frac{2(0)}{3 - \sqrt{0} + 9} \\&= \frac{0}{12} = 0 \end{aligned}\\ 5.\\ \begin{aligned} \lim_{x \to \infty} \frac{2x+x^2+1}{1-x+2x^2} &= \lim_{x \to \infty} \frac{2/x + 1 + 1/x^2}{1/x^2 - 1/x +2} \\&= \frac{1 + 0 + 0}{2 - 0 + 0} = \frac{1}{2} \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment