A). Determine the following limits (if they exist)
1. Lim X approaches -5 x^2+x-20/3(X+5)
2. Lim t approaches 0 sin5t/t^2+4t
3. Lim approaches -infinity 3-|X|/2|X|+1
4. Lim X approaches 0 2x/3-√x+9
5. Lim X approaches +infinity 2x+x^2+1/1-x+2x^2
1.limx→−5x2+x−203(x+5)=limx→−5(x+5)(x−4)3(x+5)=limx→−5x−43=−93=−32.limx→0sin(5t)t2+4t=limx→05cos(5t)2t+4=543.limx→−∞3−∣x∣2∣x∣+1=limx→−∞3∣x∣−12+1∣x∣=−124.limx→02x3−x+9=2(0)3−0+9=012=05.limx→∞2x+x2+11−x+2x2=limx→∞2/x+1+1/x21/x2−1/x+2=1+0+02−0+0=12\displaystyle 1.\\ \begin{aligned} \lim_{x \to -5} \frac{x^2+x-20}{3(x+5)} &= \lim_{x \to -5} \frac{(x + 5)(x - 4)}{3(x+5)} \\&= \lim_{x \to -5} \frac{x - 4}{3} \\&= \frac{-9}{3} = -3 \end{aligned}\\ 2.\\ \begin{aligned} \lim_{x \to 0} \frac{\sin(5t)}{t^2+4t} &= \lim_{x \to 0} \frac{5\cos(5t)}{2t + 4} \\&= \frac{5}{4} \end{aligned}\\ 3.\\ \begin{aligned} \lim_{x \to -\infty} \frac{3-|x|}{2|x|+1} &= \lim_{x \to -\infty} \frac{\frac{3}{|x|} - 1}{2+\frac{1}{|x|}} \\&= \frac{-1}{2} \end{aligned}\\ 4.\\ \begin{aligned} \lim_{x \to 0} \frac{2x}{3 - \sqrt{x} + 9} &= \frac{2(0)}{3 - \sqrt{0} + 9} \\&= \frac{0}{12} = 0 \end{aligned}\\ 5.\\ \begin{aligned} \lim_{x \to \infty} \frac{2x+x^2+1}{1-x+2x^2} &= \lim_{x \to \infty} \frac{2/x + 1 + 1/x^2}{1/x^2 - 1/x +2} \\&= \frac{1 + 0 + 0}{2 - 0 + 0} = \frac{1}{2} \end{aligned}1.x→−5lim3(x+5)x2+x−20=x→−5lim3(x+5)(x+5)(x−4)=x→−5lim3x−4=3−9=−32.x→0limt2+4tsin(5t)=x→0lim2t+45cos(5t)=453.x→−∞lim2∣x∣+13−∣x∣=x→−∞lim2+∣x∣1∣x∣3−1=2−14.x→0lim3−x+92x=3−0+92(0)=120=05.x→∞lim1−x+2x22x+x2+1=x→∞lim1/x2−1/x+22/x+1+1/x2=2−0+01+0+0=21
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment