A). Determine the following limits (if they exist)
1. Lim X approaches -5 x^2+x-20/3(X+5)
2. Lim t approaches 0 sin5t/t^2+4t
3. Lim approaches -infinity 3-|X|/2|X|+1
4. Lim X approaches 0 2x/3-√x+9
5. Lim X approaches +infinity 2x+x^2+1/1-x+2x^2
"\\displaystyle\n1.\\\\\n\\begin{aligned}\n\\lim_{x \\to -5} \\frac{x^2+x-20}{3(x+5)} &= \\lim_{x \\to -5} \\frac{(x + 5)(x - 4)}{3(x+5)}\n\\\\&= \\lim_{x \\to -5} \\frac{x - 4}{3}\n\\\\&= \\frac{-9}{3} = -3\n\\end{aligned}\\\\\n\n2.\\\\\n\\begin{aligned}\n \\lim_{x \\to 0} \\frac{\\sin(5t)}{t^2+4t} &= \\lim_{x \\to 0} \\frac{5\\cos(5t)}{2t + 4}\n\\\\&= \\frac{5}{4}\n\\end{aligned}\\\\\n\n3.\\\\\n\\begin{aligned}\n\\lim_{x \\to -\\infty} \\frac{3-|x|}{2|x|+1} &= \\lim_{x \\to -\\infty} \\frac{\\frac{3}{|x|} - 1}{2+\\frac{1}{|x|}} \n\\\\&= \\frac{-1}{2}\n\\end{aligned}\\\\\n\n\n4.\\\\\n\\begin{aligned}\n\\lim_{x \\to 0} \\frac{2x}{3 - \\sqrt{x} + 9} &= \\frac{2(0)}{3 - \\sqrt{0} + 9} \n\\\\&= \\frac{0}{12} = 0\n\\end{aligned}\\\\\n\n\n5.\\\\\n\\begin{aligned}\n\\lim_{x \\to \\infty} \\frac{2x+x^2+1}{1-x+2x^2}\n&= \\lim_{x \\to \\infty} \\frac{2\/x + 1 + 1\/x^2}{1\/x^2 - 1\/x +2}\n\\\\&= \\frac{1 + 0 + 0}{2 - 0 + 0} = \\frac{1}{2}\n\\end{aligned}"
Comments
Leave a comment