Question #226022
(b) Find the area of the region inside the cardioid r=2 + 2
1
Expert's answer
2021-08-16T12:33:16-0400
r=2+2sinθr=2+2\sin \theta

A=02π12r2dθ=02π12(2+2sinθ)2dθA=\displaystyle\int_{0}^{2\pi}\dfrac{1}{2}r^2d\theta=\displaystyle\int_{0}^{2\pi}\dfrac{1}{2}(2+2\sin \theta)^2d\theta

=02π(2+4sinθ+2sin2θ)dθ=\displaystyle\int_{0}^{2\pi}(2+4\sin\theta+2\sin^2\theta)d\theta

=02π(2+4sinθ+1cos(2θ))dθ=\displaystyle\int_{0}^{2\pi}(2+4\sin\theta+1-\cos(2\theta))d\theta

=[3θ4cosθ12sin(2θ)]2π0=[3\theta-4\cos\theta-\dfrac{1}{2}\sin(2\theta)]\begin{matrix} 2\pi\\ 0 \end{matrix}

=6π40(040)=6π=6\pi-4-0-(0-4-0)=6\pi

Area=6πArea=6\pi square units.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS