Let's move on to polar coordinates
x=rcosφ, y=rsinφx = r\cos \varphi ,\,y = r\sin \varphix=rcosφ,y=rsinφ
We get the equation
rcosφ⋅rsinφ=a⇒r2⋅12sin2φ=a⇒r2=2asin2φr\cos \varphi \cdot r\sin \varphi = a \Rightarrow {r^2} \cdot \frac{1}{2}\sin 2\varphi = a \Rightarrow {r^2} = \frac{{2a}}{{\sin 2\varphi }}rcosφ⋅rsinφ=a⇒r2⋅21sin2φ=a⇒r2=sin2φ2a
Answer: r2=2asin2φ{r^2} = \frac{{2a}}{{\sin 2\varphi }}r2=sin2φ2a
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment