Question #225472

determine the integral from pie/2 to 0 of function sin2x cosx dx


1
Expert's answer
2021-08-15T16:58:50-0400
π/20sin2xcosxdx\displaystyle\int_{\pi/2}^{0}\sin 2x \cos x dx

sin2xcosxdx=2sinxcosxcosxdx\int\sin2x \cos x dx=\int2\sin x\cos x \cos xdx


u=cosx,du=sinxdxu=\cos x, du=-\sin x dx


2sinxcosxcosxdx=2u2du=23u3+C\int2\sin x\cos x \cos xdx=-\int 2u^2du=-\dfrac{2}{3}u^3+C

=23cos3x+C=-\dfrac{2}{3}\cos^3x+C

π/20sin2xcosxdx=[23cos3x]0π/2=23+0\displaystyle\int_{\pi/2}^{0}\sin 2x \cos x dx=\big[-\dfrac{2}{3}\cos^3x\big]\begin{matrix} 0 \\ \pi/2 \end{matrix}=-\dfrac{2}{3}+0


π/20sin2xcosxdx=23\displaystyle\int_{\pi/2}^{0}\sin 2x \cos x dx=-\dfrac{2}{3}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS