The position vector is given by, r=cosΟti^+sinΟtj^β
(a) Velocity is given by,
v=dtdβr=dtdβ(cosΟti^+sinΟtj^β)=βΟsinΟti^+ΟcosΟtj^β
If velocity is perpendicular to position then, r.v=0
r.v=(cosΟti^+sinΟtj^β).(βΟsinΟti^+ΟcosΟtj^β)
r.v=βΟsinΟtcosΟt+ΟsinΟtcosΟt=0
So, velocity and position are perpendicular.
(b) a=dtdβv=dtdβ(βΟsinΟti^+ΟcosΟtj^β)=βΟ2cosΟti^βΟ2sinΟtj^β=βΟ2r
A negative sign indicates that it is acting toward the origin.
β£aβ£=Ο2β£rβ£βΉβ£aβ£ββ£rβ£
(c) rΓv=(cosΟti^+sinΟtj^β)Γ(βΟsinΟti^+ΟcosΟtj^β)
rΓv=(Οcos2Οt+Οsin2Οt)k^=Οk^
Hence, it is a constant vector.
Comments
Leave a comment