The position vector is given by, r β = c o s Ο t i ^ + s i n Ο t j ^ \vec{r}=cos\omega t \hat{i}+sin\omega t \hat{j} r = cos Ο t i ^ + s inΟ t j ^ β
(a) Velocity is given by,
v β = d d t r β = d d t ( c o s Ο t i ^ + s i n Ο t j ^ ) = β Ο s i n Ο t i ^ + Ο c o s Ο t j ^ \vec{v}= \frac{d}{dt}\vec{r}=\frac{d}{dt}(cos\omega t \hat{i}+sin\omega t \hat{j}) = -\omega sin\omega t \hat{i}+\omega cos\omega t \hat{j} v = d t d β r = d t d β ( cos Ο t i ^ + s inΟ t j ^ β ) = β Ο s inΟ t i ^ + Ο cos Ο t j ^ β
If velocity is perpendicular to position then, r β . v β = 0 \vec{r}.\vec{v} = 0 r . v = 0
r β . v β = ( c o s Ο t i ^ + s i n Ο t j ^ ) . ( β Ο s i n Ο t i ^ + Ο c o s Ο t j ^ ) \vec{r}.\vec{v} = (cos\omega t \hat{i}+sin\omega t \hat{j}).(-\omega sin\omega t \hat{i}+\omega cos\omega t \hat{j}) r . v = ( cos Ο t i ^ + s inΟ t j ^ β ) . ( β Ο s inΟ t i ^ + Ο cos Ο t j ^ β )
r β . v β = β Ο s i n Ο t c o s Ο t + Ο s i n Ο t c o s Ο t = 0 \vec{r}.\vec{v} = -\omega sin\omega t cos\omega t+\omega sin\omega t cos\omega t = 0 r . v = β Ο s inΟ t cos Ο t + Ο s inΟ t cos Ο t = 0
So, velocity and position are perpendicular.
(b) a β = d d t v β = d d t ( β Ο s i n Ο t i ^ + Ο c o s Ο t j ^ ) = β Ο 2 c o s Ο t i ^ β Ο 2 s i n Ο t j ^ = β Ο 2 r β \vec{a} = \frac{d}{dt} \vec{ v } =\frac{d}{dt}( -\omega sin\omega t \hat{i}+\omega cos\omega t \hat{j}) = -\omega^2 cos\omega t\hat{i} -\omega^2 sin\omega t\hat{j} = -\omega^2 \vec{r} a = d t d β v = d t d β ( β Ο s inΟ t i ^ + Ο cos Ο t j ^ β ) = β Ο 2 cos Ο t i ^ β Ο 2 s inΟ t j ^ β = β Ο 2 r
A negative sign indicates that it is acting toward the origin.
β£ a β β£ = Ο 2 β£ r β β£ β
β βΉ β
β β£ a β β£ β β£ r β β£ |\vec{a}| = \omega^2|\vec{r}| \implies |\vec{a}| \propto|\vec{r}| β£ a β£ = Ο 2 β£ r β£ βΉ β£ a β£ β β£ r β£
(c) r β Γ v β = ( c o s Ο t i ^ + s i n Ο t j ^ ) Γ ( β Ο s i n Ο t i ^ + Ο c o s Ο t j ^ ) \vec{r} \times \vec{v} = (cos\omega t \hat{i}+sin\omega t \hat{j}) \times ( -\omega sin\omega t \hat{i}+\omega cos\omega t \hat{j}) r Γ v = ( cos Ο t i ^ + s inΟ t j ^ β ) Γ ( β Ο s inΟ t i ^ + Ο cos Ο t j ^ β )
r β Γ v β = ( Ο c o s 2 Ο t + Ο s i n 2 Ο t ) k ^ = Ο k ^ \vec{r} \times \vec{v} = (\omega cos^2\omega t+ \omega sin^2\omega t)\hat{k} = \omega \hat{k} r Γ v = ( Ο co s 2 Ο t + Ο s i n 2 Ο t ) k ^ = Ο k ^
Hence, it is a constant vector.
Comments