Question:
A particle moves such that its vector is given by π
= cos ππ‘π + sin ππ‘π where π is a constant. Show that:
(i)
Velocity, π£
of the particle is perpendicular to π
(ii)
Acceleration, π
is directed towards the origin and has magnitude proportional to the
distance from the origin.
(iii) π
π π£
is a constant vector
The position vector is given by, "\\vec{r}=cos\\omega t \\hat{i}+sin\\omega t \\hat{j}"
(a) Velocity is given by,
"\\vec{v}= \\frac{d}{dt}\\vec{r}=\\frac{d}{dt}(cos\\omega t \\hat{i}+sin\\omega t \\hat{j}) = -\\omega sin\\omega t \\hat{i}+\\omega cos\\omega t \\hat{j}"
If velocity is perpendicular to position then, "\\vec{r}.\\vec{v} = 0"
"\\vec{r}.\\vec{v} = (cos\\omega t \\hat{i}+sin\\omega t \\hat{j}).(-\\omega sin\\omega t \\hat{i}+\\omega cos\\omega t \\hat{j})"
"\\vec{r}.\\vec{v} = -\\omega sin\\omega t cos\\omega t+\\omega sin\\omega t cos\\omega t = 0"
So, velocity and position are perpendicular.
(b) "\\vec{a} = \\frac{d}{dt} \\vec{ v } =\\frac{d}{dt}( -\\omega sin\\omega t \\hat{i}+\\omega cos\\omega t \\hat{j}) = -\\omega^2 cos\\omega t\\hat{i} -\\omega^2 sin\\omega t\\hat{j} = -\\omega^2 \\vec{r}"
A negative sign indicates that it is acting toward the origin.
"|\\vec{a}| = \\omega^2|\\vec{r}| \\implies |\\vec{a}| \\propto|\\vec{r}|"
(c) "\\vec{r} \\times \\vec{v} = (cos\\omega t \\hat{i}+sin\\omega t \\hat{j}) \\times ( -\\omega sin\\omega t \\hat{i}+\\omega cos\\omega t \\hat{j})"
"\\vec{r} \\times \\vec{v} = (\\omega cos^2\\omega t+ \\omega sin^2\\omega t)\\hat{k} = \\omega \\hat{k}"
Hence, it is a constant vector.
Comments
Leave a comment