Answer to Question #225438 in Calculus for Unknown346307

Question #225438

Question:

A particle moves such that its vector is given by π‘Ÿ

= cos πœ”π‘‘π‘– + sin πœ”π‘‘π‘— where πœ” is a constant. Show that:

(i)

Velocity, 𝑣

of the particle is perpendicular to π‘Ÿ


(ii)

Acceleration, π‘Ž

is directed towards the origin and has magnitude proportional to the

distance from the origin.

(iii) π‘Ÿ

𝑋 𝑣

is a constant vector


1
Expert's answer
2021-09-03T07:37:15-0400

The position vector is given by, r⃗=cosωti^+sinωtj^\vec{r}=cos\omega t \hat{i}+sin\omega t \hat{j}


(a) Velocity is given by,

vβƒ—=ddtrβƒ—=ddt(cosΟ‰ti^+sinΟ‰tj^)=βˆ’Ο‰sinΟ‰ti^+Ο‰cosΟ‰tj^\vec{v}= \frac{d}{dt}\vec{r}=\frac{d}{dt}(cos\omega t \hat{i}+sin\omega t \hat{j}) = -\omega sin\omega t \hat{i}+\omega cos\omega t \hat{j}

If velocity is perpendicular to position then, r⃗.v⃗=0\vec{r}.\vec{v} = 0

rβƒ—.vβƒ—=(cosΟ‰ti^+sinΟ‰tj^).(βˆ’Ο‰sinΟ‰ti^+Ο‰cosΟ‰tj^)\vec{r}.\vec{v} = (cos\omega t \hat{i}+sin\omega t \hat{j}).(-\omega sin\omega t \hat{i}+\omega cos\omega t \hat{j})

rβƒ—.vβƒ—=βˆ’Ο‰sinΟ‰tcosΟ‰t+Ο‰sinΟ‰tcosΟ‰t=0\vec{r}.\vec{v} = -\omega sin\omega t cos\omega t+\omega sin\omega t cos\omega t = 0

So, velocity and position are perpendicular.


(b) aβƒ—=ddtvβƒ—=ddt(βˆ’Ο‰sinΟ‰ti^+Ο‰cosΟ‰tj^)=βˆ’Ο‰2cosΟ‰ti^βˆ’Ο‰2sinΟ‰tj^=βˆ’Ο‰2rβƒ—\vec{a} = \frac{d}{dt} \vec{ v } =\frac{d}{dt}( -\omega sin\omega t \hat{i}+\omega cos\omega t \hat{j}) = -\omega^2 cos\omega t\hat{i} -\omega^2 sin\omega t\hat{j} = -\omega^2 \vec{r}

A negative sign indicates that it is acting toward the origin.

∣aβƒ—βˆ£=Ο‰2∣rβƒ—βˆ£β€…β€ŠβŸΉβ€…β€Šβˆ£aβƒ—βˆ£βˆβˆ£rβƒ—βˆ£|\vec{a}| = \omega^2|\vec{r}| \implies |\vec{a}| \propto|\vec{r}|


(c) rβƒ—Γ—vβƒ—=(cosΟ‰ti^+sinΟ‰tj^)Γ—(βˆ’Ο‰sinΟ‰ti^+Ο‰cosΟ‰tj^)\vec{r} \times \vec{v} = (cos\omega t \hat{i}+sin\omega t \hat{j}) \times ( -\omega sin\omega t \hat{i}+\omega cos\omega t \hat{j})

r⃗×v⃗=(ωcos2ωt+ωsin2ωt)k^=ωk^\vec{r} \times \vec{v} = (\omega cos^2\omega t+ \omega sin^2\omega t)\hat{k} = \omega \hat{k}

Hence, it is a constant vector.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment