prove that 2n+1 > (n+2) sin(n) for all positive integers n
Consider the function "f(x)=2^{x+1}-(x+2)."
Then the function "f(x)" increases for "x\\geq1."
"f(1)=2^{1+1}-(1+2)=1>0"
Hence
Then
Therefore "2^{n+1}>(n+2)\\cdot\\sin n," for all positive integers "n."
Comments
Leave a comment