Consider the function f(x)=2x+1−(x+2).
f′(x)=2x+1ln2−1≥21+1ln2−1=ln(e4)>0,x≥1 Then the function f(x) increases for x≥1.
f(1)=21+1−(1+2)=1>0 Hence
2n+1>(n+2),n≥11≥sinn,n>1 Then
2n+1>n+2≥(n+2)⋅sinn,n≥1
Therefore 2n+1>(n+2)⋅sinn, for all positive integers n.
Comments
Leave a comment