Prove that 2 to the power n+1 > (n + 2) · sin(n) for all positive integers n.
Consider the function "f(x)=2^{x+1}-(x+2)."
"f'(x)=2^{x+1}\\ln2-1\\geq2^{1+1}\\ln2-1=\\ln(\\dfrac{4}{e})>0, x\\geq1"Then the function "f(x)" increases for "x\\geq1."
"f(1)=2^{1+1}-(1+2)=1>0"Hence
Then
Therefore "2^{n+1}>(n+2)\\cdot\\sin n," for all positive integers "n."
Comments
Leave a comment