Answer to Question #226121 in Calculus for Ram

Question #226121

Prove that 2 to the power n+1 > (n + 2) · sin(n) for all positive integers n. 


1
Expert's answer
2021-08-16T16:53:02-0400

Consider the function f(x)=2x+1(x+2).f(x)=2^{x+1}-(x+2).

f(x)=2x+1ln2121+1ln21=ln(4e)>0,x1f'(x)=2^{x+1}\ln2-1\geq2^{1+1}\ln2-1=\ln(\dfrac{4}{e})>0, x\geq1

Then the function f(x)f(x) increases for x1.x\geq1.

f(1)=21+1(1+2)=1>0f(1)=2^{1+1}-(1+2)=1>0

Hence


2n+1>(n+2),n12^{n+1}>(n+2), n\geq 11sinn,n>11\geq\sin n, n>1

Then


2n+1>n+2(n+2)sinn,n12^{n+1}>n+2\geq(n+2)\cdot\sin n, n\geq1


Therefore 2n+1>(n+2)sinn,2^{n+1}>(n+2)\cdot\sin n, for all positive integers n.n.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment