Which of the following represents the integral ∫1xlnxdx{\int \frac{1}{x\ln{x}}dx}∫xlnx1dx
1) ln(lnx)+Cln(lnx)+Cln(lnx)+C
2) ln(xlnx)+Cln(xlnx)+Cln(xlnx)+C
3) lnxlnx+Clnxlnx+Clnxlnx+C
4) None of the above
∫1xln(x)dx\smallint\frac{1}{xln(x)}dx∫xln(x)1dx
Substitute u=ln(x)u=ln(x)u=ln(x)
Hence dudx=1x,\frac{du}{dx}=\frac{1}{x},dxdu=x1, dx=xdu.dx=xdu.dx=xdu.
Therefore, = ∫1udu\smallint\frac{1}{u}du∫u1du
This the standard integral;
=ln(u)+C=ln(u)+C=ln(u)+C
Undo substitution u=ln(x)u=ln(x)u=ln(x)
=ln(ln(x))+C=ln(ln(x))+C=ln(ln(x))+C
Hence the answer is ln(lnx)+Cln(lnx)+Cln(lnx)+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments