Question #227630

Which of the following values represent the definite integral 0π/4etanθsec2θdθ\displaystyle{\int_{0}^{\pi/4}e^{\tan{\theta}}\sec^2{\theta}d\theta}

1) e2e ^2

2) e - 1

3) e/2

4) e


1
Expert's answer
2021-08-25T08:59:15-0400

Let u=tanθ, when θ=0,u=0 and when θ=π4,u=1 and du=sec2θdθ    0π4etanθsec2θdθ=01eudu=[eu]01=e1e0=e1\displaystyle \text{Let $u = \tan\theta$, when $\theta = 0,\, u = 0$ and when $\theta = \frac\pi4, \, u = 1$ and } du = \sec^2\theta d \theta \\ \implies \int_{0}^{\frac \pi4} e^{\tan \theta} \sec^2 \theta \, d\theta = \int^1_0 e^u \, du = \left[e^u\right]^1_0 = e^1-e^0 \\=e-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS