Which of the following values represent the definite integral ∫0π/4etanθsec2θdθ\displaystyle{\int_{0}^{\pi/4}e^{\tan{\theta}}\sec^2{\theta}d\theta}∫0π/4etanθsec2θdθ
1) e2e ^2e2
2) e - 1
3) e/2
4) e
Let u=tanθ, when θ=0, u=0 and when θ=π4, u=1 and du=sec2θdθ ⟹ ∫0π4etanθsec2θ dθ=∫01eu du=[eu]01=e1−e0=e−1\displaystyle \text{Let $u = \tan\theta$, when $\theta = 0,\, u = 0$ and when $\theta = \frac\pi4, \, u = 1$ and } du = \sec^2\theta d \theta \\ \implies \int_{0}^{\frac \pi4} e^{\tan \theta} \sec^2 \theta \, d\theta = \int^1_0 e^u \, du = \left[e^u\right]^1_0 = e^1-e^0 \\=e-1Let u=tanθ, when θ=0,u=0 and when θ=4π,u=1 and du=sec2θdθ⟹∫04πetanθsec2θdθ=∫01eudu=[eu]01=e1−e0=e−1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments