Question #228320
find the ordinate of the centroid of the area bounded by the parabola y=x^2 and the line y=2x+3
1
Expert's answer
2021-08-24T08:08:17-0400

f(x)= x2 , g(x)=2x + 3


A= ab\int_a^b (g(x) - f(x))dx


x\overline{x} = 1A\frac{1}{A} ab\int_a^b x(g(x) - f(x))dx


y\overline{y} =1A\frac{1}{A} ab\int_a^b 12\frac{1}{2} (g(x)2 - f(x)2)dx


Find a and b;

x2= 2x+3

x2 -2x-3=0

x1=-1, x2=3


A = ab\int_a^b (2x-3-x2)dx = x2-3x-x33\frac{x^3}{3} 13\vert_{-1}^3


= 9+9−9−(1−3−13\frac{1}{3} )=11-13\frac{1}{3} =343\frac{34}{3}


x\overline{x} = 334\frac{3}{34} 13\int_{-1}^3 x(2x +3 -x2)dx = 334\frac{3}{34} 13\int_{-1}^3 (2x2+3x-x3)dx =


334\frac{3}{34} (2x33\frac{2x^3}{3} +3x22\frac{3x^2}{2} -x44\frac{x^4}{4}13\vert_{-1}^{3} ) = 334\frac{3}{34} (18+272\frac{27}{2}- 814\frac{81}{4} -(23+3214-\frac{2}{3} + \frac{3}{2} -\frac{1}{4} ) ) =1617\frac{16}{17}



y\overline{y} = 334\frac{3}{34} 13\int_{-1}^3 12\frac{1}{2} ((2x +3)2 -x4)dx = 368\frac{3}{68} 13\int_{-1}^3 (4x2+12x +9-x4)dx =


368\frac{3}{68} (4x33\frac{4x^3}{3} -6x2 -9x-x55\frac{x^5}{5}13\vert_{-1}^{3} ) = 368\frac{3}{68} (36 + 54 + 272435-\frac{243}{5}- (43+6915-\frac{4}{3} +6-9 -\frac{1}{5} ) ) =165\frac{16}{5}



The coordinate of centroid is (1617,165\frac{16}{17} , \frac{16}{5} )






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS