f(x)= x2 , g(x)=2x + 3
A= "\\int_a^b" (g(x) - f(x))dx
"\\overline{x}" = "\\frac{1}{A}" "\\int_a^b" x(g(x) - f(x))dx
"\\overline{y}" ="\\frac{1}{A}" "\\int_a^b" "\\frac{1}{2}" (g(x)2 - f(x)2)dx
Find a and b;
x2= 2x+3
x2 -2x-3=0
x1=-1, x2=3
A = "\\int_a^b" (2x-3-x2)dx = x2-3x-"\\frac{x^3}{3}" "\\vert_{-1}^3"
= 9+9−9−(1−3−"\\frac{1}{3}" )=11-"\\frac{1}{3}" ="\\frac{34}{3}"
"\\overline{x}" = "\\frac{3}{34}" "\\int_{-1}^3" x(2x +3 -x2)dx = "\\frac{3}{34}" "\\int_{-1}^3" (2x2+3x-x3)dx =
"\\frac{3}{34}" ("\\frac{2x^3}{3}" +"\\frac{3x^2}{2}" -"\\frac{x^4}{4}""\\vert_{-1}^{3}" ) = "\\frac{3}{34}" (18+"\\frac{27}{2}"- "\\frac{81}{4}" -("-\\frac{2}{3} + \\frac{3}{2} -\\frac{1}{4}" ) ) ="\\frac{16}{17}"
"\\overline{y}" = "\\frac{3}{34}" "\\int_{-1}^3" "\\frac{1}{2}" ((2x +3)2 -x4)dx = "\\frac{3}{68}" "\\int_{-1}^3" (4x2+12x +9-x4)dx =
"\\frac{3}{68}" ("\\frac{4x^3}{3}" -6x2 -9x-"\\frac{x^5}{5}""\\vert_{-1}^{3}" ) = "\\frac{3}{68}" (36 + 54 + 27"-\\frac{243}{5}-" ("-\\frac{4}{3} +6-9 -\\frac{1}{5}" ) ) ="\\frac{16}{5}"
The coordinate of centroid is ("\\frac{16}{17} , \\frac{16}{5}" )
Comments
Leave a comment