Answer:-
To convert from cylindrical to rectangular coordinates, we use the equations
x = r cos θ , y = r sin θ , z = z x=r\cos \theta, y=r\sin \theta, z=z x = r cos θ , y = r sin θ , z = z z = x 2 + y 2 , z = ( r cos θ ) 2 + ( r sin θ ) 2 = r z=\sqrt{x^2+y^2}, z=\sqrt{(r\cos \theta)^2+(r\sin \theta)^2}=r z = x 2 + y 2 , z = ( r cos θ ) 2 + ( r sin θ ) 2 = r z = x 2 + y 2 , z = ( r cos θ ) 2 + ( r sin θ ) 2 = r 2 z=x^2+y^2, z=(r\cos \theta)^2+(r\sin \theta)^2=r^2 z = x 2 + y 2 , z = ( r cos θ ) 2 + ( r sin θ ) 2 = r 2 r = r 2 , r 1 = 0 , r 2 = 1 r=r^2, r_1=0, r_2=1 r = r 2 , r 1 = 0 , r 2 = 1 V = ∫ 0 π / 2 d θ ∫ 0 1 r d r ∫ r 2 r d z V=\displaystyle\int_{0}^{\pi/2}d\theta\displaystyle\int_{0}^{1}rdr\displaystyle\int_{r^2}^{r}dz V = ∫ 0 π /2 d θ ∫ 0 1 r d r ∫ r 2 r d z = ∫ 0 π / 2 d θ ∫ 0 1 ( r 2 − r 3 ) d r =\displaystyle\int_{0}^{\pi/2}d\theta\displaystyle\int_{0}^{1}(r^2-r^3)dr = ∫ 0 π /2 d θ ∫ 0 1 ( r 2 − r 3 ) d r = π 2 ( 1 3 − 1 4 ) = π 24 ( u n i t s 2 ) =\dfrac{\pi}{2}(\dfrac{1}{3}-\dfrac{1}{4})=\dfrac{\pi}{24}({units}^2) = 2 π ( 3 1 − 4 1 ) = 24 π ( u ni t s 2 )
Comments