find the taylor series expansion of
f(x)=(9-e-x)1/2 about x=0 hence determine (9-e-0.03) to 3 decimal places using the first three terms
Find the Taylor series expansion of "f(x)=(9-e^{-x})" about "x=0"
A Maclaurin series is given byÂ
"f(x)=\\sum_{k=0}^{\\infin } {f^{(k)}(a)\\over k!} x^k"
In our case, "f(x)\u2248P(x)=\\sum_{k=0}^{n} {f^{(k)}(a)\\over k!} x^k=\\sum_{k=0}^{3 } {f^{(k)}(a)\\over k!} x^k"
So, what we need to do to get the desired polynomial is to calculate the derivatives, evaluate them at the given point, and plug the results into the given formula.
"f^{(0)}(x)=f(x)=\\sqrt{9\u2212e^{\u2212x}}"
Evaluate the function at the point: "f(0)=\\sqrt{9\u2212e^{\u22120}}=2 \\sqrt 2"
Find the 1st derivative:Â
"f'(x)={1\\over 2}(9-e^{-x})^{-{1\\over 2}}e^{-x}"
When "x=0"
"f'(0)={1\\over 2}(9-e^{-(0)})^{-{1\\over 2}}e^{-(0)}={1\\over 2}(9-1)^{-{1\\over 2}}.(1)={1\\over 2}(8)^{-{1\\over 2}}.(1)={1\\over 2}(8)^{-{1\\over 2}}={ \\sqrt 2 \\over 8}"
Find the 2nd derivative:
"f''(x)=(-{1\\over 2})({1\\over 2})(9-e^{-x})^{-{3\\over 2}}.e^{-x}.e^{-x}-{1\\over 2}(9-e^{-x})^{-{1\\over 2}}.e^{-x}"
"=(-{1\\over 4})(9-e^{-x})^{-{3\\over 2}}.e^{-2x}-{1\\over 2}(9-e^{-x})^{-{1\\over 2}}.e^{-x}"
When "x=0"
"f''(0)=(-{1\\over 4})(9-e^{-(0)})^{-{3\\over 2}}.e^{-2(0)}-{1\\over 2}(9-e^{-(0)})^{-{1\\over 2}}.e^{-(0)}"
"=(-{1\\over 4})(9-1)^{-{3\\over 2}}.1-{1\\over 2}(9-1)^{-{1\\over 2}}.1"
"=(-{1\\over 4})(8)^{-{3\\over 2}}-{1\\over 2}(8)^{-{1\\over 2}}=-{17 \\sqrt 2 \\over 128}"
Find the 3rd derivative:
"f'''(x)=(-{3\\over 2})(-{1\\over 4})(9-e^{-x})^{-{5\\over 2}}.e^{-x}.{e^{-2x}}+{2\\over 4}(9-e^{-x})^{-{3\\over 2}}.e^{-2x}-[(-{1\\over 2})({1\\over 2})(9-e^{-x})^{-{3\\over 2}}.e^{-x}.{e^{-x}}-{1\\over 2}(9-e^{-x})^{-{1\\over 2}}.e^{-x}]"
"=({3\\over 8})(9-e^{-x})^{-{5\\over 2}}.e^{-3x}+{2\\over 4}(9-e^{-x})^{-{3\\over 2}}.e^{-2x}+({1\\over 4})(9-e^{-x})^{-{3\\over 2}}.e^{-2x}+{1\\over 2}(9-e^{-x})^{-{1\\over 2}}.e^{-x}"
When "x=0"
"f'''(0)=({3\\over 8})(9-e^{-(0)})^{-{5\\over 2}}.e^{-3(0)}+{2\\over 4}(9-e^{-(0)})^{-{3\\over 2}}.e^{-2(0)}+({1\\over 4})(9-e^{-(0)})^{-{3\\over 2}}.e^{-2(0)}+{1\\over 2}(9-e^{-(0)})^{-{1\\over 2}}.e^{-(0)}"
"=({3\\over 8})(9-1)^{-{5\\over 2}}.1+{2\\over 4}(9-1)^{-{3\\over 2}}.1+({1\\over 4})(9-1)^{-{3\\over 2}}.1+{1\\over 2}(9-1)^{-{1\\over 2}}.1"
"=({3\\over 8})(8)^{-{5\\over 2}}+{2\\over 4}(8)^{-{3\\over 2}}+({1\\over 4})(8)^{-{3\\over 2}}+{1\\over 2}(8)^{-{1\\over 2}}={307 \\sqrt 2 \\over 2048}"
From Taylor series,
"f(x)={f(0)\\over 0!}x^0+{f'(0)\\over 1!}x^1+{f''(0)\\over 2!}x^2+{f'''(0)\\over 3!}x^3+..."
Now, use the calculated values to get a polynomial:
"\\implies f(x)={2 \\sqrt 2\\over 0!}x^0+{{ \\sqrt 2 \\over 8}\\over 1!}x^1+{-{17 \\sqrt 2 \\over 128}\\over 2!}x^2+{{307 \\sqrt 2 \\over 2048}\\over 3!}x^3+..."
"={2 \\sqrt 2\\over 1}.1+{{ \\sqrt 2 \\over 8}\\over 1}x+{-{17 \\sqrt 2 \\over 128}\\over 2}x^2+{{307 \\sqrt 2 \\over 2048}\\over 6}x^3+..."
"=2 \\sqrt 2+{ \\sqrt 2 \\over 8}x-{17 \\sqrt 2 \\over 256}x^2+{307 \\sqrt 2 \\over 12288}x^3+..."
Determine "(9-e^{-0.03})" to 3 decimal places using the first three terms
"(9-e^{-0.03})^{1\\over 2} \\approx 2 \\sqrt 2+{ \\sqrt 2 \\over 8}(-0.03)-{17 \\sqrt 2 \\over 256}(-0.03)^2+{307 \\sqrt 2 \\over 12288}(-0.03)^3"
"\\approx 2.828427125-0.005303300859-0.00008452135744-0.000000953972674"
"\\approx 2.823038349"
"\\implies (9-e^{-0.03})=((9-e^{-0.03})^{1\\over 2})^2 \\approx(2.823038349)^2 \\approx7.970" correct to 3 decimal places
Comments
Leave a comment