Given In="\\int" tannxdx show that In=(tann-1x/n-1)-In-2
"I{n}=\\int tan ^n(x)dx=\\int tan^{n-2}(x)tan^2(x)dx\\newline =\\int tan^{n-2}(x)(sec^2(x)-1)dx\\newline=\\int tan^{n-2}(x)sec^2(x)dx-\\int tan^{n-2}(x)dx\\newline let\\ u=tan(x)\\newline\\frac{du}{dx}=sec^2(x)dx\\newline du=sec^2(x)dx\\newline \\int tan^{n-2}(x)sec^2(x)dx=\\int u^{n-2}du=\\frac{u^{n-1}}{n-1}+C\\newline therefore\\int tan^n(x)dx=\\frac{tan^{n-1}}{n+1}(x)-\\int tan^{n-2}(x)dx\\newline hence\\ I_{n}=\\frac{tan^{n-1}(x)}{n-1}-I_{n-2}"
Comments
Leave a comment