Answer to Question #218958 in Calculus for judas

Question #218958

Given In=\int tannxdx show that In=(tann-1x/n-1)-In-2

1
Expert's answer
2021-07-28T12:25:27-0400

In=tann(x)dx=tann2(x)tan2(x)dx=tann2(x)(sec2(x)1)dx=tann2(x)sec2(x)dxtann2(x)dxlet u=tan(x)dudx=sec2(x)dxdu=sec2(x)dxtann2(x)sec2(x)dx=un2du=un1n1+Cthereforetann(x)dx=tann1n+1(x)tann2(x)dxhence In=tann1(x)n1In2I{n}=\int tan ^n(x)dx=\int tan^{n-2}(x)tan^2(x)dx\newline =\int tan^{n-2}(x)(sec^2(x)-1)dx\newline=\int tan^{n-2}(x)sec^2(x)dx-\int tan^{n-2}(x)dx\newline let\ u=tan(x)\newline\frac{du}{dx}=sec^2(x)dx\newline du=sec^2(x)dx\newline \int tan^{n-2}(x)sec^2(x)dx=\int u^{n-2}du=\frac{u^{n-1}}{n-1}+C\newline therefore\int tan^n(x)dx=\frac{tan^{n-1}}{n+1}(x)-\int tan^{n-2}(x)dx\newline hence\ I_{n}=\frac{tan^{n-1}(x)}{n-1}-I_{n-2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment