Given In=∫\int∫ tannxdx show that In=(tann-1x/n-1)-In-2
In=∫tann(x)dx=∫tann−2(x)tan2(x)dx=∫tann−2(x)(sec2(x)−1)dx=∫tann−2(x)sec2(x)dx−∫tann−2(x)dxlet u=tan(x)dudx=sec2(x)dxdu=sec2(x)dx∫tann−2(x)sec2(x)dx=∫un−2du=un−1n−1+Ctherefore∫tann(x)dx=tann−1n+1(x)−∫tann−2(x)dxhence In=tann−1(x)n−1−In−2I{n}=\int tan ^n(x)dx=\int tan^{n-2}(x)tan^2(x)dx\newline =\int tan^{n-2}(x)(sec^2(x)-1)dx\newline=\int tan^{n-2}(x)sec^2(x)dx-\int tan^{n-2}(x)dx\newline let\ u=tan(x)\newline\frac{du}{dx}=sec^2(x)dx\newline du=sec^2(x)dx\newline \int tan^{n-2}(x)sec^2(x)dx=\int u^{n-2}du=\frac{u^{n-1}}{n-1}+C\newline therefore\int tan^n(x)dx=\frac{tan^{n-1}}{n+1}(x)-\int tan^{n-2}(x)dx\newline hence\ I_{n}=\frac{tan^{n-1}(x)}{n-1}-I_{n-2}In=∫tann(x)dx=∫tann−2(x)tan2(x)dx=∫tann−2(x)(sec2(x)−1)dx=∫tann−2(x)sec2(x)dx−∫tann−2(x)dxlet u=tan(x)dxdu=sec2(x)dxdu=sec2(x)dx∫tann−2(x)sec2(x)dx=∫un−2du=n−1un−1+Ctherefore∫tann(x)dx=n+1tann−1(x)−∫tann−2(x)dxhence In=n−1tann−1(x)−In−2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment