Solution
2) ∫cosnxdx
We have
In=∫cosnxdx
cosnx=cosn−1xcosx
⟹In=∫cosn−1xcosxdx
Let's do integration by parts
Let u=cosn−1x⟹du=(n−1)cosn−2x(−sinx)dx=−(n−1)cosn−2x(sinx)dx
Let dv=cosxdx⟹v=sinx
In=∫udv=uv−∫vdu
=cosn−1xsinx−∫sinx(−(n−1)cosn−2x(sinx))dx
=cosn−1xsinx+∫sinx(n−1)cosn−2xsinxdx
=cosn−1xsinx+∫(n−1)cosn−2xsinxsinxdx
but sinxsinx=sin2x
⟹In=cosn−1xsinx+∫(n−1)cosn−2xsin2xdx
We know that sin2x=1−cos2x
⟹In=cosn−1xsinx+∫(n−1)cosn−2x(1−cos2x)dx
=cosn−1xsinx+(n−1)∫cosn−2x(1−cos2x)dx
=cosn−1xsinx+(n−1)∫cosn−2xdx−(n−1)∫cosnxdx
=cosn−1xsinx+(n−1)In−2−(n−1)In
Now, collect the like terms
⟹In+(n−1)In=cosn−1xsinx+(n−1)In−2
⟹In+nIn−In=cosn−1xsinx+(n−1)In−2
∴nIn=cosn−1xsinx+(n−1)In−2
⟹In=ncosn−1xsinx+(n−1)In−2 for n≥2
For initial values (I2,I3....)
3) ∫xnexdx
Let's do integration by parts
Let u=xn⟹du=nx(n−1)dx
dv=exdx⟹v=ex
In=∫udv=uv−∫vdu
=xnex−∫exnx(n−1)dx
=xnex−n∫x(n−1)exdx
=xnex−nIn−1
∴In=xnex−nIn−1 for n≥1
For initial values (I1,I2...)
4) ∫tannxdx
We have
In=∫tannxdx
=∫tann−2xtan2xdx but tan2x=sec2x−1
=∫tann−2x(sec2x−1)dx
=∫tann−2xsec2xdx−∫tann−2xdx
Let's evaluate ∫tann−2xsec2xdx
Let u=tanx⟹du=sec2xdx
Rewrite ∫tann−2xsec2xdx in terms of u as follows
∫tann−2xsec2xdx=∫un−2du=n−1un−1=n−1tann−1x
⟹In=n−1tann−1x−∫tann−2xdx
∴In=n−1tann−1x−In−2 for n≥2
For initial values (I2,I3...)
Comments