Solution
2) "\u222bcos^nxdx"
We have
"I_n=\u222bcos^nxdx"
"cos^n x=cos^{n-1}xcosx"
"\\implies I_n=\u222bcos^{n-1}xcosxdx"
Let's do integration by parts
Let "u=cos^{n-1}x \\implies du=(n-1)cos^{n-2}x(-sinx)dx=-(n-1)cos^{n-2}x(sinx)dx"
Let "dv=cosxdx \\implies v=sinx"
"I_n=\\int udv=uv-\\int vdu"
"=cos^{n-1}xsinx-\\int sinx(-(n-1)cos^{n-2}x(sinx))dx"
"=cos^{n-1}xsinx+\\int sinx(n-1)cos^{n-2}xsinxdx"
"=cos^{n-1}xsinx+\\int (n-1)cos^{n-2}xsinxsinxdx"
but "sinxsinx=sin^2x"
"\\implies I_n=cos^{n-1}xsinx+\\int (n-1)cos^{n-2}xsin^2xdx"
We know that "sin^2x=1-cos^2x"
"\\implies I_n=cos^{n-1}xsinx+\\int (n-1)cos^{n-2}x(1-cos^2x)dx"
"=cos^{n-1}xsinx+(n-1)\\int cos^{n-2}x(1-cos^2x)dx"
"=cos^{n-1}xsinx+(n-1)\\int cos^{n-2}xdx-(n-1)\\int cos^nxdx"
"=cos^{n-1}xsinx+(n-1)I_{n-2}-(n-1)I_n"
Now, collect the like terms
"\\implies I_n+(n-1)I_n=cos^{n-1}xsinx+(n-1)I_{n-2}"
"\\implies I_n+nI_n-I_n=cos^{n-1}xsinx+(n-1)I_{n-2}"
"\\therefore nI_n=cos^{n-1}xsinx+(n-1)I_{n-2}"
"\\implies I_n={cos^{n-1}xsinx+(n-1)I_{n-2}\\over n}" for "n\\ge 2"
For initial values "(I_2,I_3....)"
3) "\u222bx^ne^xdx"
Let's do integration by parts
Let "u=x^n \\implies du=nx^{(n-1)}dx"
"dv=e^xdx \\implies v=e^x"
"I_n=\\int udv=uv-\\int vdu"
"=x^ne^x-\\int e^xnx^{(n-1)}dx"
"=x^ne^x-n\\int x^{(n-1)}e^xdx"
"=x^ne^x-nI_{n-1}"
"\\therefore I_n=x^ne^x-nI_{n-1}" for "n\\ge1"
For initial values "(I_1,I_2...)"
4) "\u222btan^nxdx"
We have
"I_n=\u222btan^nxdx"
"=\u222btan^{n-2}xtan^2xdx" but "tan^2x=sec^2x-1"
"=\u222btan^{n-2}x(sec^2x-1)dx"
"=\u222btan^{n-2}xsec^2xdx-\\int tan^{n-2}xdx"
Let's evaluate "\u222btan^{n-2}xsec^2xdx"
Let "u=tanx \\implies du=sec^2xdx"
Rewrite "\u222btan^{n-2}xsec^2xdx" in terms of "u" as follows
"\u222btan^{n-2}xsec^2xdx=\\int u^{n-2}du={u^{n-1}\\over n-1}={tan^{n-1}x\\over n-1}"
"\\implies I_n={tan^{n-1}x\\over n-1}-\\int tan^{n-2}xdx"
"\\therefore I_n={tan^{n-1}x\\over n-1}-I_{n-2}" for "n\\ge2"
For initial values "(I_2,I_3...)"
Comments
Leave a comment