Question #218923
  1. derive the reduction formulas for
  2. ∫cosnxdx satisfies nIn=cosn-1xsinx+(n-1)In-2
  3. ∫xnexdx
  4. ∫tannxdx
1
Expert's answer
2021-07-22T12:58:16-0400

Solution

2) cosnxdx∫cos^nxdx

We have

In=cosnxdxI_n=∫cos^nxdx

cosnx=cosn1xcosxcos^n x=cos^{n-1}xcosx

    In=cosn1xcosxdx\implies I_n=∫cos^{n-1}xcosxdx

Let's do integration by parts

Let u=cosn1x    du=(n1)cosn2x(sinx)dx=(n1)cosn2x(sinx)dxu=cos^{n-1}x \implies du=(n-1)cos^{n-2}x(-sinx)dx=-(n-1)cos^{n-2}x(sinx)dx

Let dv=cosxdx    v=sinxdv=cosxdx \implies v=sinx

In=udv=uvvduI_n=\int udv=uv-\int vdu

=cosn1xsinxsinx((n1)cosn2x(sinx))dx=cos^{n-1}xsinx-\int sinx(-(n-1)cos^{n-2}x(sinx))dx

=cosn1xsinx+sinx(n1)cosn2xsinxdx=cos^{n-1}xsinx+\int sinx(n-1)cos^{n-2}xsinxdx

=cosn1xsinx+(n1)cosn2xsinxsinxdx=cos^{n-1}xsinx+\int (n-1)cos^{n-2}xsinxsinxdx

but sinxsinx=sin2xsinxsinx=sin^2x

    In=cosn1xsinx+(n1)cosn2xsin2xdx\implies I_n=cos^{n-1}xsinx+\int (n-1)cos^{n-2}xsin^2xdx

We know that sin2x=1cos2xsin^2x=1-cos^2x

    In=cosn1xsinx+(n1)cosn2x(1cos2x)dx\implies I_n=cos^{n-1}xsinx+\int (n-1)cos^{n-2}x(1-cos^2x)dx

=cosn1xsinx+(n1)cosn2x(1cos2x)dx=cos^{n-1}xsinx+(n-1)\int cos^{n-2}x(1-cos^2x)dx

=cosn1xsinx+(n1)cosn2xdx(n1)cosnxdx=cos^{n-1}xsinx+(n-1)\int cos^{n-2}xdx-(n-1)\int cos^nxdx

=cosn1xsinx+(n1)In2(n1)In=cos^{n-1}xsinx+(n-1)I_{n-2}-(n-1)I_n

Now, collect the like terms

    In+(n1)In=cosn1xsinx+(n1)In2\implies I_n+(n-1)I_n=cos^{n-1}xsinx+(n-1)I_{n-2}

    In+nInIn=cosn1xsinx+(n1)In2\implies I_n+nI_n-I_n=cos^{n-1}xsinx+(n-1)I_{n-2}

nIn=cosn1xsinx+(n1)In2\therefore nI_n=cos^{n-1}xsinx+(n-1)I_{n-2}


    In=cosn1xsinx+(n1)In2n\implies I_n={cos^{n-1}xsinx+(n-1)I_{n-2}\over n} for n2n\ge 2

For initial values (I2,I3....)(I_2,I_3....)


3) xnexdx∫x^ne^xdx

Let's do integration by parts

Let u=xn    du=nx(n1)dxu=x^n \implies du=nx^{(n-1)}dx

dv=exdx    v=exdv=e^xdx \implies v=e^x

In=udv=uvvduI_n=\int udv=uv-\int vdu

=xnexexnx(n1)dx=x^ne^x-\int e^xnx^{(n-1)}dx

=xnexnx(n1)exdx=x^ne^x-n\int x^{(n-1)}e^xdx

=xnexnIn1=x^ne^x-nI_{n-1}

In=xnexnIn1\therefore I_n=x^ne^x-nI_{n-1} for n1n\ge1

For initial values (I1,I2...)(I_1,I_2...)

4) tannxdx∫tan^nxdx

We have

In=tannxdxI_n=∫tan^nxdx

=tann2xtan2xdx=∫tan^{n-2}xtan^2xdx but tan2x=sec2x1tan^2x=sec^2x-1

=tann2x(sec2x1)dx=∫tan^{n-2}x(sec^2x-1)dx

=tann2xsec2xdxtann2xdx=∫tan^{n-2}xsec^2xdx-\int tan^{n-2}xdx

Let's evaluate tann2xsec2xdx∫tan^{n-2}xsec^2xdx

Let u=tanx    du=sec2xdxu=tanx \implies du=sec^2xdx

Rewrite tann2xsec2xdx∫tan^{n-2}xsec^2xdx in terms of uu as follows

tann2xsec2xdx=un2du=un1n1=tann1xn1∫tan^{n-2}xsec^2xdx=\int u^{n-2}du={u^{n-1}\over n-1}={tan^{n-1}x\over n-1}

    In=tann1xn1tann2xdx\implies I_n={tan^{n-1}x\over n-1}-\int tan^{n-2}xdx

In=tann1xn1In2\therefore I_n={tan^{n-1}x\over n-1}-I_{n-2} for n2n\ge2

For initial values (I2,I3...)(I_2,I_3...)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS