ANSWER.
Denote "D" the XY-projection of surface "S". "D=\\ \\left\\{ \\left( x,y \\right) :1\\le { x }^{ 2 }+{ y }^{ 2 }\\le 9 \\right\\}".
Since "S=\\left\\{ \\left( x,y,f(x,y) \\right) :\\left( x,y \\right) \\in D,f(x,y)=\\sqrt { { x }^{ 2 }+{ y }^{ 2 } } \\right\\}" then to calculate area of "S" we have "A=\\iint _{ S }^{ \\ }{ dS\\ =\\iint _{ D }^{ \\ \\ }{ \\sqrt { 1+{ \\left( \\frac { \\partial f }{ \\partial x } \\right) }^{ 2 }+{ \\left( \\frac { \\partial f }{ \\partial y } \\right) }^{ 2 } } dxdy } }" .
"\\sqrt { 1+{ \\left( \\frac { \\partial f }{ \\partial x } \\right) }^{ 2 }+{ \\left( \\frac { \\partial f }{ \\partial y } \\right) }^{ 2 } } =\\sqrt { 2 }" , because "\\frac { \\partial f }{ \\partial x } =\\frac { x }{ \\sqrt { { x }^{ 2 }+{ y }^{ 2 } } } ,\\frac { \\partial f }{ \\partial y } =\\frac { y }{ \\sqrt { { x }^{ 2 }+{ y }^{ 2 } } }" . Therefore
"A=\\iint _{ D }^{ \\ }{ \\sqrt { 2^{ \\quad } } dxdy } =\\sqrt { 2^{ \\ } } \\iint _{ D }^{ \\ }{ \\ dxdy }" . To calculate this integral ,replace Cartesian coordinates with polar coordinates : "A=\\quad \\sqrt { 2^{ \\ } } \\int _{ 0 }^{ 2\\pi }{ \\int _{ 1 }^{ 3 }{ rdrd\\theta } } =2\\sqrt { 2 } \\pi \\int _{ 1 }^{ 3 }{ rdr=\\sqrt { 2 } \\pi { \\left( { r }^{ 2 } \\right) }_{ 1 }^{ 3 }=\\sqrt { 2 } \\pi (9-1)=8\\sqrt { 2 } \\pi \\quad }".
Comments
Leave a comment