Question #218913
Consider the surface: S={(x,y,z)|z=sqr(x^2+y^2) and 1</=z</=3}. (a) sketch the surface S in R^3. Also show its XY-projection on your sketch. (b) evaluate the area of S, using a surface integral.
1
Expert's answer
2021-07-22T13:58:50-0400

ANSWER.

Denote DD the XY-projection of surface SS. D= {(x,y):1x2+y29}D=\ \left\{ \left( x,y \right) :1\le { x }^{ 2 }+{ y }^{ 2 }\le 9 \right\}.

Since S={(x,y,f(x,y)):(x,y)D,f(x,y)=x2+y2}S=\left\{ \left( x,y,f(x,y) \right) :\left( x,y \right) \in D,f(x,y)=\sqrt { { x }^{ 2 }+{ y }^{ 2 } } \right\} then to calculate area of SS we have A=S dS =D  1+(fx)2+(fy)2dxdyA=\iint _{ S }^{ \ }{ dS\ =\iint _{ D }^{ \ \ }{ \sqrt { 1+{ \left( \frac { \partial f }{ \partial x } \right) }^{ 2 }+{ \left( \frac { \partial f }{ \partial y } \right) }^{ 2 } } dxdy } } .

1+(fx)2+(fy)2=2\sqrt { 1+{ \left( \frac { \partial f }{ \partial x } \right) }^{ 2 }+{ \left( \frac { \partial f }{ \partial y } \right) }^{ 2 } } =\sqrt { 2 } , because fx=xx2+y2,fy=yx2+y2\frac { \partial f }{ \partial x } =\frac { x }{ \sqrt { { x }^{ 2 }+{ y }^{ 2 } } } ,\frac { \partial f }{ \partial y } =\frac { y }{ \sqrt { { x }^{ 2 }+{ y }^{ 2 } } } . Therefore

A=D 2dxdy=2 D  dxdyA=\iint _{ D }^{ \ }{ \sqrt { 2^{ \quad } } dxdy } =\sqrt { 2^{ \ } } \iint _{ D }^{ \ }{ \ dxdy } . To calculate this integral ,replace Cartesian coordinates with polar coordinates : A=2 02π13rdrdθ=22π13rdr=2π(r2)13=2π(91)=82πA=\quad \sqrt { 2^{ \ } } \int _{ 0 }^{ 2\pi }{ \int _{ 1 }^{ 3 }{ rdrd\theta } } =2\sqrt { 2 } \pi \int _{ 1 }^{ 3 }{ rdr=\sqrt { 2 } \pi { \left( { r }^{ 2 } \right) }_{ 1 }^{ 3 }=\sqrt { 2 } \pi (9-1)=8\sqrt { 2 } \pi \quad }.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS