The asymptote(s) of the curve parallel to y -axis is given by 2a−x=0.
Then the vertical asymptote is x=2a.
y=2a−xx3 Let x=2asin2θ.
dx=4asinθcosθdθ
Area=A=∫02a2a−xx3dx
=∫0π/22a−2asin2θ8a3sin6θ4asinθcosθdθ
=8a2∫0π/2cosθsin3θsinθcosθdθ
=8a2∫0π/2sin4θdθ=2a2∫0π/2(1−cos(2θ))2dθ
=2a2∫0π/2(1−2cos(2θ)+cos2(2θ))dθ
=a2∫0π/2(2−4cos(2θ)+1+cos(4θ))dθ
=a2[3θ−2sin(2θ)+41sin4θ()]π/20
=23πa2(units2) Area=23π2 square units.
Comments