Question #218806
Find the area of the curve y2 (2a – x) = x3
between the area and its asymptotes.
1
Expert's answer
2021-07-20T08:12:00-0400

The asymptote(s) of the curve parallel to yy -axis is given by 2ax=0.2a-x=0.

Then the vertical asymptote is x=2a.x=2a.


y=x32axy=\sqrt{\dfrac{x^3}{2a-x}}

Let x=2asin2θ.x=2a\sin^2\theta.



dx=4asinθcosθdθdx=4a\sin \theta \cos \theta d\theta

Area=A=02ax32axdxArea=A=\displaystyle\int_{0}^{2a}\sqrt{\dfrac{x^3}{2a-x}}dx

=0π/28a3sin6θ2a2asin2θ4asinθcosθdθ=\displaystyle\int_{0}^{\pi/2}\sqrt{\dfrac{8a^3\sin^6\theta}{2a-2a\sin^2\theta}}4a\sin \theta \cos \theta d\theta

=8a20π/2sin3θsinθcosθcosθdθ=8a^2\displaystyle\int_{0}^{\pi/2}\dfrac{\sin^3\theta\sin \theta \cos \theta}{\cos \theta}d\theta

=8a20π/2sin4θdθ=2a20π/2(1cos(2θ))2dθ=8a^2\displaystyle\int_{0}^{\pi/2}\sin^4\theta d\theta=2a^2\displaystyle\int_{0}^{\pi/2}(1-\cos(2\theta))^2 d\theta

=2a20π/2(12cos(2θ)+cos2(2θ))dθ=2a^2\displaystyle\int_{0}^{\pi/2}(1-2\cos(2\theta)+\cos^2(2\theta)) d\theta

=a20π/2(24cos(2θ)+1+cos(4θ))dθ=a^2\displaystyle\int_{0}^{\pi/2}(2-4\cos(2\theta)+1+\cos(4\theta)) d\theta

=a2[3θ2sin(2θ)+14sin4θ()]π/20=a^2\bigg[3\theta-2\sin(2\theta)+\dfrac{1}{4}\sin4\theta()\bigg]\begin{matrix} \pi/2 \\ 0 \end{matrix}

=3πa22(units2)=\dfrac{3\pi a^2}{2} (units^2)

Area=3π22Area=\dfrac{3\pi ^2}{2} square units.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS