The asymptote(s) of the curve parallel to "y" -axis is given by "2a-x=0."
Then the vertical asymptote is "x=2a."
Let "x=2a\\sin^2\\theta."
"Area=A=\\displaystyle\\int_{0}^{2a}\\sqrt{\\dfrac{x^3}{2a-x}}dx"
"=\\displaystyle\\int_{0}^{\\pi\/2}\\sqrt{\\dfrac{8a^3\\sin^6\\theta}{2a-2a\\sin^2\\theta}}4a\\sin \\theta \\cos \\theta d\\theta"
"=8a^2\\displaystyle\\int_{0}^{\\pi\/2}\\dfrac{\\sin^3\\theta\\sin \\theta \\cos \\theta}{\\cos \\theta}d\\theta"
"=8a^2\\displaystyle\\int_{0}^{\\pi\/2}\\sin^4\\theta d\\theta=2a^2\\displaystyle\\int_{0}^{\\pi\/2}(1-\\cos(2\\theta))^2 d\\theta"
"=2a^2\\displaystyle\\int_{0}^{\\pi\/2}(1-2\\cos(2\\theta)+\\cos^2(2\\theta)) d\\theta"
"=a^2\\displaystyle\\int_{0}^{\\pi\/2}(2-4\\cos(2\\theta)+1+\\cos(4\\theta)) d\\theta"
"=a^2\\bigg[3\\theta-2\\sin(2\\theta)+\\dfrac{1}{4}\\sin4\\theta()\\bigg]\\begin{matrix}\n \\pi\/2 \\\\\n 0\n\\end{matrix}"
"=\\dfrac{3\\pi a^2}{2} (units^2)"
"Area=\\dfrac{3\\pi ^2}{2}" square units.
Comments
Leave a comment