(a) "\\dfrac{dy}{d\\theta}=y\\sin\\theta; y(\\pi)=3"
Solution:
Separate the variables
"\\dfrac{dy}{y}=\\sin\\theta d\\theta"
"\\displaystyle\\int\\dfrac{dy}{y}=\\int\\sin\\theta d\\theta+c"
"\\displaystyle\\ln|y|=-\\cos\\theta+c"
General solution is
"\\displaystyle y=e^{-\\cos\\theta+c}"
Rewrite general solution as
"\\displaystyle y=e^{-\\cos\\theta}\\cdot e^{c}"
To find "e^c" take initial conditions "y(\\pi)=3" and substitute "\\theta=\\pi; y=3"
"\\displaystyle 3=e^{-\\cos\\pi}\\cdot e^{c}"
"\\displaystyle 3=e^{-(-1)}\\cdot e^{c}"
"\\displaystyle 3=e\\cdot e^{c}"
"\\displaystyle e^{c}=\\dfrac{3}{e}"
"\\displaystyle y=e^{-\\cos\\theta}\\cdot\\frac{3}{e}"
Particular solution is
"\\displaystyle y=3e^{-\\cos\\theta-1}"
(b) "x^2 \\dfrac{dy}{dx}=y-xy; y(1)=1"
Solution:
Separate the variables
"x^2 \\dfrac{dy}{dx}=y(1-x)"
"\\dfrac{dy}{y}=\\dfrac{(1-x)}{x^2}dx"
"\\displaystyle\\int\\frac{dy}{y}=\\int\\frac{(1-x)}{x^2}dx+c"
"\\displaystyle\\int\\frac{dy}{y}=\\int\\left(\\frac{1}{x^2}-\\frac{x}{x^2}\\right)dx+c"
"\\displaystyle\\int\\frac{dy}{y}=\\int\\left(\\frac{1}{x^2}-\\frac{1}{x}\\right)dx+c"
"\\displaystyle\\ln|y|=-\\frac{1}{x}-\\ln|x|+c"
"\\displaystyle\\ln|y|+\\ln|x|=-\\frac{1}{x}+c"
"\\displaystyle\\ln|yx|=-\\frac{1}{x}+c"
"\\displaystyle yx=e^{-\\frac{1}{x}+c}"
General solution is
"\\displaystyle y=\\frac{e^{-\\frac{1}{x}+c}}{x}"
Substitute "x=1, y=1"
"\\displaystyle 1=\\frac{e^{-\\frac{1}{1}+c}}{1}"
"\\displaystyle 1=e^{-1+c}"
"\\displaystyle e^0=e^{-1+c}"
"\\displaystyle 0=-1+c"
"c=1"
Particular solution is
"\\displaystyle y=\\frac{e^{-\\frac{1}{x}+1}}{x}"
Comments
Leave a comment