Answer to Question #218834 in Calculus for Njabulo

Question #218834
Solve the following differential equation subject to the given initial condition. (a)dy/d(theta)=ysin(theta); y(pi)=3. (b) x^2 dy/dx=y-xy; y(1)=1
1
Expert's answer
2022-02-23T15:08:33-0500

(a) dydθ=ysinθ;y(π)=3\dfrac{dy}{d\theta}=y\sin\theta; y(\pi)=3


Solution:


Separate the variables

dyy=sinθdθ\dfrac{dy}{y}=\sin\theta d\theta

dyy=sinθdθ+c\displaystyle\int\dfrac{dy}{y}=\int\sin\theta d\theta+c

lny=cosθ+c\displaystyle\ln|y|=-\cos\theta+c


General solution is

y=ecosθ+c\displaystyle y=e^{-\cos\theta+c}


Rewrite general solution as

y=ecosθec\displaystyle y=e^{-\cos\theta}\cdot e^{c}

To find ece^c take initial conditions y(π)=3y(\pi)=3 and substitute θ=π;y=3\theta=\pi; y=3

3=ecosπec\displaystyle 3=e^{-\cos\pi}\cdot e^{c}

3=e(1)ec\displaystyle 3=e^{-(-1)}\cdot e^{c}

3=eec\displaystyle 3=e\cdot e^{c}

ec=3e\displaystyle e^{c}=\dfrac{3}{e}

y=ecosθ3e\displaystyle y=e^{-\cos\theta}\cdot\frac{3}{e}


Particular solution is

y=3ecosθ1\displaystyle y=3e^{-\cos\theta-1}



(b) x2dydx=yxy;y(1)=1x^2 \dfrac{dy}{dx}=y-xy; y(1)=1


Solution:


Separate the variables

x2dydx=y(1x)x^2 \dfrac{dy}{dx}=y(1-x)

dyy=(1x)x2dx\dfrac{dy}{y}=\dfrac{(1-x)}{x^2}dx

dyy=(1x)x2dx+c\displaystyle\int\frac{dy}{y}=\int\frac{(1-x)}{x^2}dx+c

dyy=(1x2xx2)dx+c\displaystyle\int\frac{dy}{y}=\int\left(\frac{1}{x^2}-\frac{x}{x^2}\right)dx+c

dyy=(1x21x)dx+c\displaystyle\int\frac{dy}{y}=\int\left(\frac{1}{x^2}-\frac{1}{x}\right)dx+c

lny=1xlnx+c\displaystyle\ln|y|=-\frac{1}{x}-\ln|x|+c

lny+lnx=1x+c\displaystyle\ln|y|+\ln|x|=-\frac{1}{x}+c

lnyx=1x+c\displaystyle\ln|yx|=-\frac{1}{x}+c

yx=e1x+c\displaystyle yx=e^{-\frac{1}{x}+c}


General solution is

y=e1x+cx\displaystyle y=\frac{e^{-\frac{1}{x}+c}}{x}


Substitute x=1,y=1x=1, y=1

1=e11+c1\displaystyle 1=\frac{e^{-\frac{1}{1}+c}}{1}

1=e1+c\displaystyle 1=e^{-1+c}

e0=e1+c\displaystyle e^0=e^{-1+c}

0=1+c\displaystyle 0=-1+c

c=1c=1


Particular solution is

y=e1x+1x\displaystyle y=\frac{e^{-\frac{1}{x}+1}}{x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment