(a) dθdy=ysinθ;y(π)=3
Solution:
Separate the variables
ydy=sinθdθ
∫ydy=∫sinθdθ+c
ln∣y∣=−cosθ+c
General solution is
y=e−cosθ+c
Rewrite general solution as
y=e−cosθ⋅ec
To find ec take initial conditions y(π)=3 and substitute θ=π;y=3
3=e−cosπ⋅ec
3=e−(−1)⋅ec
3=e⋅ec
ec=e3
y=e−cosθ⋅e3
Particular solution is
y=3e−cosθ−1
(b) x2dxdy=y−xy;y(1)=1
Solution:
Separate the variables
x2dxdy=y(1−x)
ydy=x2(1−x)dx
∫ydy=∫x2(1−x)dx+c
∫ydy=∫(x21−x2x)dx+c
∫ydy=∫(x21−x1)dx+c
ln∣y∣=−x1−ln∣x∣+c
ln∣y∣+ln∣x∣=−x1+c
ln∣yx∣=−x1+c
yx=e−x1+c
General solution is
y=xe−x1+c
Substitute x=1,y=1
1=1e−11+c
1=e−1+c
e0=e−1+c
0=−1+c
c=1
Particular solution is
y=xe−x1+1
Comments
Leave a comment